Biological Sciences (BIO_SC)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
<th>Credit Hours</th>
<th>Prerequisites/Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO_SC 1001</td>
<td>Topics in Biological Science - General</td>
<td>Selected topics not covered in current offerings. May not be used in partial fulfillment of requirements for a biological science in general education. May be graded on A-F or S/U basis.</td>
<td>1-3</td>
<td></td>
</tr>
<tr>
<td>BIO_SC 1002</td>
<td>Topics in Biological Sciences - Biological Sciences</td>
<td>Selected topics not in regularly offered courses. Selected sections of this course may be graded either on A-F or S/U basis only.</td>
<td>1-3</td>
<td></td>
</tr>
<tr>
<td>BIO_SC 1006</td>
<td>Topics in Biological Sciences - Mathematical Sciences</td>
<td>Selected topics not in regularly offered courses. Selected sections of this course may be graded either on A-F or S/U basis only.</td>
<td>1-3</td>
<td></td>
</tr>
<tr>
<td>BIO_SC 1007</td>
<td>Topics in Biological Sciences - Physical Sciences</td>
<td>Selected topics not in regularly offered courses. Selected sections of this course may be graded either on A-F or S/U basis only.</td>
<td>1-3</td>
<td></td>
</tr>
<tr>
<td>BIO_SC 1010</td>
<td>General Principles and Concepts of Biology</td>
<td>Emphasizes connections and applications to society and the human condition, science literacy, and critical thinking skills. A discussion of general principles and fundamental concepts of living things. This course is intended for non-science majors. No more than 5 credits for BIO_SC 1010, BIO_SC 1020, and BIO_SC 1030.</td>
<td>3</td>
<td>Recommended: MATH 1100 or concurrent enrollment</td>
</tr>
<tr>
<td>BIO_SC 1020</td>
<td>General Botany with Laboratory</td>
<td>Introduction to study of plants. Emphasis on structure, growth, physiology, genetics and reproduction of plants.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>BIO_SC 1030</td>
<td>General Principles and Concepts of Biology with Laboratory</td>
<td>Basic concepts and principles of the structure and function of living systems, from cells to populations. Foundation course for science students intending to complete a 3-semester sequence that also includes genetics and cell biology.</td>
<td>5</td>
<td>Recommended: MATH 1100 or sufficient ALEKS score</td>
</tr>
<tr>
<td>BIO_SC 1060</td>
<td>Basic Environmental Studies</td>
<td>Considers the ecosystem, energy and biogeochemical cycles and population dynamics; relation of the environment to agriculture and technology, pollution, power and food production; politico-economic considerations; moral and ethical issues. For non-science majors.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BIO_SC 1200</td>
<td>General Botany with Laboratory</td>
<td>Introduction to study of plants. Emphasis on structure, growth, physiology, genetics and reproduction of plants.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>BIO_SC 1400</td>
<td>Evolution for Everyone</td>
<td>This course will explore the application of evolutionary theory to modern human affairs. We will study the processes involved in evolution and investigate evolutionary interpretations of human social behavior (e.g., psychology, mate choice, economics, religion, and morality). No credit if student has received credit for BIO_SC 2060 or BIO_SC 4600.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BIO_SC 1500</td>
<td>Introduction to Biological Systems with Laboratory</td>
<td>Basic concepts and principles of the structure and function of living systems, from cells to populations. Foundation course for science students intending to complete a 3-semester sequence that also includes genetics and cell biology.</td>
<td>5</td>
<td>Recommended: MATH 1100 or sufficient ALEKS score</td>
</tr>
<tr>
<td>BIO_SC 1500H</td>
<td>Introduction to Biological Systems with Laboratory Honors</td>
<td>Basic concepts and principles of the structure and function of living systems, from cells to populations. Foundation course for science students intending to complete a 3-semester sequence that also includes genetics and cell biology.</td>
<td>3-5</td>
<td>Prerequisites: MATH 1100 and high school chemistry. Honors eligibility required</td>
</tr>
<tr>
<td>BIO_SC 2001</td>
<td>Topics in Biological Sciences - General</td>
<td>Selected topics not covered in current offerings. May not be used in partial fulfillment of requirements for a biological science in general education. May be graded on A-F or S/U basis.</td>
<td>1-3</td>
<td>Recommended: One course in Biology</td>
</tr>
<tr>
<td>BIO_SC 2002</td>
<td>Topics in Biological Sciences- Biological Sciences</td>
<td>Selected topics not covered in regularly offered courses. Selected sections of this course may be graded either on A-F or S/U basis only.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Description</td>
<td>Credit Hours</td>
<td>Prerequisites</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>-------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>BIO_SC 2002H</td>
<td>Topics in Biological Sciences - Biological Science - Honors</td>
<td>Selected topics not covered in regularly offered courses. Recommended: a course in biology</td>
<td>1-3</td>
<td>Honors eligibility required</td>
</tr>
<tr>
<td>BIO_SC 2006</td>
<td>Topics in Biological Sciences - Mathematical Sciences</td>
<td>Selected topics not covered in regularly offered courses. Selected sections of this course may be graded either on A-F or S/U basis only.</td>
<td>1-3</td>
<td>a course in general biology</td>
</tr>
<tr>
<td>BIO_SC 2006H</td>
<td>Topics in Biological Sciences - Mathematical Science - Honors</td>
<td>Selected topics not covered in regularly offered courses. Recommended: a course in biology</td>
<td>1-3</td>
<td>Honors eligibility required</td>
</tr>
<tr>
<td>BIO_SC 2007</td>
<td>Topics in Biological Sciences - Physical Sciences</td>
<td>Selected topics not covered in regularly offered courses. Selected sections of this course may be graded either on A-F or S/U basis only.</td>
<td>1-3</td>
<td>a course in general biology</td>
</tr>
<tr>
<td>BIO_SC 2007H</td>
<td>Topics in Biological Sciences - Physical Science - Honors</td>
<td>Selected topics not covered in regularly offered courses. Recommended: a course in biology</td>
<td>1-3</td>
<td>Honors eligibility required</td>
</tr>
<tr>
<td>BIO_SC 2010</td>
<td>Undergraduate Seminar in Biological Sciences</td>
<td>Discussion and critical evaluation of current topics in biological sciences for intermediate-level students. Some sections may be graded on either A-F or S/U basis only.</td>
<td>1-3</td>
<td>Sophomore standing</td>
</tr>
<tr>
<td>BIO_SC 2015</td>
<td>Biological Career Explorations</td>
<td>Students will learn about career options and choices, construct career portfolios, and interact with current biological professionals. Graded on S/U basis only.</td>
<td>1</td>
<td>Sophomore standing</td>
</tr>
<tr>
<td>BIO_SC 2020</td>
<td>How the Brain Works</td>
<td>Basic structure and function of the brain; left and right brain studies; gender differences; learning and memory; brain disorders</td>
<td>1</td>
<td>C- or above in BIO_SC 1010 or BIO_SC 1500</td>
</tr>
<tr>
<td>BIO_SC 2030</td>
<td>Life of the Cell</td>
<td>This course will help students understand basic concepts of biomolecular structure, cell organization, cell membranes, energy and metabolism, cellular communication, and cell division. This course is intended for non-science majors and may not be used to satisfy requirements for either a major or a minor in biological sciences.</td>
<td>3</td>
<td>BIO_SC 1010 or equivalent. Not open to biology majors</td>
</tr>
<tr>
<td>BIO_SC 2100</td>
<td>Infectious Diseases</td>
<td>An introduction to the basic science of bacterial, viral, protozoan, fungal and helminth infections, including discussions of how illness has influenced or been affected by public policy and culture.</td>
<td>3</td>
<td>BIO_SC 1010, BIO_SC 1200 or BIO_SC 1500. Not open to Biology Majors</td>
</tr>
<tr>
<td>BIO_SC 2150</td>
<td>Genetic Diseases</td>
<td>This course will discuss the biological basis for genetic diseases, including inherited diseases and non-inherited diseases such as cancer. The units will include an introduction providing necessary background information, as section studying the technology used to study genetic diseases and several units discussing specific diseases and their impact on history and society. This course is intended for non-science majors. Cannot be used to satisfy degree requirements for biology major or biology minor.</td>
<td>3</td>
<td>BIO_SC 1010</td>
</tr>
<tr>
<td>BIO_SC 2200</td>
<td>General Genetics</td>
<td>Principles of inheritance in plants and animals; structure and use of genetic material, transmission of genetic information, linkage, modification of genetic information, regulation of genetic activity, population genetics.</td>
<td>4</td>
<td>BIO_SC 1500 and CHEM 1320 (or concurrent enrollment)</td>
</tr>
<tr>
<td>BIO_SC 2200H</td>
<td>General Genetics - Honors</td>
<td>Principles of inheritance in plants and animals; structure and use of genetic material, transmission of genetic information, linkage, modification of genetic information, regulation of genetic activity, population genetics.</td>
<td>4</td>
<td>BIO_SC 1500 and CHEM 1320 (or concurrent enrollment); Honors eligibility required</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Description</td>
<td>Credit Hours</td>
<td>Prerequisites</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>---</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>BIO_SC 2300</td>
<td>Introduction to Cell Biology</td>
<td>Analysis of cellular organization and function at the molecular level. The mechanisms underlying cellular trafficking, cell motility, and signaling within cells and between cells and their environment will be emphasized.</td>
<td>4</td>
<td>BIO_SC 2200</td>
</tr>
<tr>
<td>BIO_SC 2300H</td>
<td>Introduction to Cell Biology-Honors</td>
<td>Analysis of cellular organization and function at the molecular level. The mechanisms underlying cellular trafficking, cell motility, and signaling within cells and between cells and their environment will be emphasized.</td>
<td>4</td>
<td>BIO_SC 2200, Honors eligibility required</td>
</tr>
<tr>
<td>BIO_SC 2300HW</td>
<td>Introduction to Cell Biology - Honors/Writing Intensive</td>
<td>Analysis of cellular organization and function at the molecular level. The mechanisms underlying cellular trafficking, cell motility, and signaling within cells and between cells and their environment will be emphasized.</td>
<td>4</td>
<td>BIO_SC 2200, Honors eligibility required</td>
</tr>
<tr>
<td>BIO_SC 2940</td>
<td>Internship in Biological Science</td>
<td>Work experience in a non-profit, for profit, or governmental organization relevant to the biological sciences. Intended for students doing internships in which independent research is less than 50% of the experience. Graded on S/U basis only.</td>
<td>1-3</td>
<td>Instructor's consent</td>
</tr>
<tr>
<td>BIO_SC 2950</td>
<td>Directed Independent Research</td>
<td>Participation in faculty research activities. May not be used to satisfy degree requirements for BA or BS in biological sciences or the minor in biological sciences.</td>
<td>1-3</td>
<td>Departmental consent</td>
</tr>
<tr>
<td>BIO_SC 2960</td>
<td>Readings in Biological Science</td>
<td>Supervised reading in biological literature. May be repeated up to six hours total credit. Selected sections of this course may be graded either on A-F or S/U basis only. May not be used in partial fulfillment of Arts and Science foundation requirement.</td>
<td>1-3</td>
<td>Instructor's consent</td>
</tr>
<tr>
<td>BIO_SC 2965H</td>
<td>Honors Readings in Biological Literature</td>
<td>Selected readings in biological literature for Honors, in consultation with instructor. May not be used in partial fulfillment of Arts and Science foundation requirement.</td>
<td>1-3</td>
<td>Honors eligibility required</td>
</tr>
<tr>
<td>BIO_SC 3002</td>
<td>Topics in Biological Sciences - Biological Sciences</td>
<td>Selected topics not in regularly offered courses. Selected sections of this course may be graded either on A-F or S/U basis only.</td>
<td>1-3</td>
<td>Junior Standing</td>
</tr>
<tr>
<td>BIO_SC 3002H</td>
<td>Topics in Biological Sciences - Biological Sciences - Honors</td>
<td>Selected topics not offered in regular curriculum.</td>
<td>1-3</td>
<td>Junior Standing</td>
</tr>
<tr>
<td>BIO_SC 3002W</td>
<td>Topics in Biological Sciences - Biological Sciences - Writing Intensive</td>
<td>Selected topics not in regularly offered courses. Selected sections of this course may be graded either on A-F or S/U basis only.</td>
<td>1-3</td>
<td>Junior Standing</td>
</tr>
<tr>
<td>BIO_SC 3006</td>
<td>Topics in Biological Sciences - Mathematical Sciences</td>
<td>Selected topics not in regularly offered courses. Selected sections of this course may be graded either on A-F or S/U basis only.</td>
<td>1-3</td>
<td>Junior Standing</td>
</tr>
<tr>
<td>BIO_SC 3006H</td>
<td>Topics in Biological Sciences - Mathematical Sciences - Honors</td>
<td>Selected topics not offered in regular curriculum.</td>
<td>1-3</td>
<td>Junior Standing</td>
</tr>
<tr>
<td>BIO_SC 3006W</td>
<td>Topics in Biological Sciences - Mathematical Sciences - Writing Intensive</td>
<td>Selected topics not in regularly offered courses. Selected sections of this course may be graded either on A-F or S/U basis only.</td>
<td>1-3</td>
<td>Junior Standing</td>
</tr>
<tr>
<td>BIO_SC 3007H</td>
<td>Topics in Biological Sciences - Physical Sciences - Honors</td>
<td>Selected topics not offered in regular curriculum.</td>
<td>1-3</td>
<td>Junior Standing</td>
</tr>
<tr>
<td>BIO_SC 3007W</td>
<td>Topics in Biological Sciences - Physical Sciences - Writing Intensive</td>
<td>Selected topics not in regularly offered courses. Selected sections of this course may be graded either on A-F or S/U basis only.</td>
<td>1-3</td>
<td>Junior Standing</td>
</tr>
</tbody>
</table>
BIO_SC 3010: Professional Skills
This course will focus on application and interview skills for students interested in medical school. Graded on S/U basis only.

Credit Hours: 1
Prerequisites: instructor's consent
Recommended: junior standing; 3.4 GPA, and biological sciences majors

BIO_SC 3050: Genetics and Society
Introduction to genetics, emphasizing the impact of genetics on human society. Human evolution, molecular genetics, genetic engineering in medicine and agriculture. An intensive writing course.

Credit Hours: 3

BIO_SC 3050W: Genetics and Society - Writing Intensive
Introduction to genetics, emphasizing the impact of genetics on human society. Human evolution, molecular genetics, genetic engineering in medicine and agriculture. An intensive writing course.

Credit Hours: 3

BIO_SC 3075: The Human Microbiome
This course examines the astonishing diversity and medical significance of the microbes that inhabit our bodies. Interactive discussions explore scientific and ethical dimensions of topics ranging from probiotics and "poop transplants" to the role of microbes in asthma and obesity.

Credit Hours: 3
Prerequisites: BIO_SC 2200

BIO_SC 3075W: The Human Microbiome - Writing Intensive
This course examines the astonishing diversity and medical significance of the microbes that inhabit our bodies. Interactive discussions explore scientific and ethical dimensions of topics ranging from probiotics and "poop transplants" to the role of microbes in asthma and obesity.

Credit Hours: 3
Prerequisites: BIO_SC 2200

BIO_SC 3210: Plant Systematics
Principles of classification of plants; survey of diversity in flowering plant families; identification of local flora; use of keys. Includes lab.

Credit Hours: 4
Recommended: 8 hours of Biological Sciences

BIO_SC 3210W: Plant Systematics - Writing Intensive
Principles of classification of plants; survey of diversity in flowering plant families; identification of local flora; use of keys. Includes lab.

Credit Hours: 4
Recommended: 8 hours of Biological Sciences

BIO_SC 3260: Invertebrate Zoology
Structure, ecology and phylogeny of the invertebrate phyla. Includes lab.

Credit Hours: 4
Prerequisites: BIO_SC 1100 or BIO_SC 1500
Recommended: Junior Standing

BIO_SC 3260W: Invertebrate Zoology - Writing Intensive
Structure, ecology and phylogeny of the invertebrate phyla. Includes lab.

Credit Hours: 4
Prerequisites: BIO_SC 1100 or BIO_SC 1500
Recommended: Junior Standing

BIO_SC 3360: Herpetology
The biology, ecology, taxonomy, and distribution of amphibians and reptiles. Some Saturday field trips.

Credit Hours: 4
Recommended: 8 hours Biological Sciences or equivalent

BIO_SC 3400: Evolution and Ecology
Introduction to principles of evolution and ecology. Topics include natural selection, adaptation, phylogenetic analysis, human evolution, population growth and regulation, population interactions, ecosystem ecology, and human impacts on ecological processes. No credit for this course if either BIO_SC 3650 or BIO_SC 4600 already completed; may not co-enroll in this course and BIO_SC 4600.

Credit Hours: 3
Prerequisites: BIO_SC 2200

BIO_SC 3510: Biology of Fungi
(same as PLNT_S 3510). The diverse roles of fungi in the biosphere will be explored by considering fungi we eat, fungi which destroy our food, fungi in folklore and fungi as global nutrient recyclers. Includes lab.

Credit Hours: 3
Prerequisites: BIO_SC 1200 or BIO_SC 1500 or equivalent

BIO_SC 3650: General Ecology
Principles of populations, coevolution, density factors, competition; physical environment; concept of community, trophic structure, biotic succession; characterization of biomes, man in ecosystem. Biology majors having completed BIO_SC 3100: 2 hours credit.

Credit Hours: 5
Prerequisites: junior standing
Recommended: 10 hours in Biology

BIO_SC 3650W: General Ecology - Writing Intensive
Principles of populations, coevolution, density factors, competition; physical environment; concept of community, trophic structure, biotic succession; characterization of biomes, man in ecosystem. Biology majors having completed BIO_SC 3100: 2 hours credit.

Credit Hours: 5
Prerequisites: junior standing
Recommended: 10 hours in Biology

BIO_SC 3655: Tropical Ecology: Methods and Applications
Field study of tropical community; additional fee for transportation and accommodations required.

Credit Hours: 3
Prerequisites: BIO_SC 3650 or BIO_SC 4600 or BIO_SC 4660
BIO_SC 3700: Animal Physiology
Introduces concepts of vertebrate organ function and homeostatic control emphasizing mammalian physiology. Some comparisons to function in other vertebrates and strategies for coping with environmental stresses introduced. Includes lab.

Credit Hours: 5
Prerequisites: BIO_SC 2300

BIO_SC 3710: Introductory Entomology
(same as PLNT_S 3710). Emphasizes the role insects play in the scheme of life. Topics include insect structure, development, diversity, ecology, communication and behavior, and management. Prerequisites: Completion of 60 credit hours and one of the following: BIO_SC 1100 (or F_W 1100) or BIO_SC 1200, or BIO_SC 1500.

Credit Hours: 3

BIO_SC 3715: Insect Diversity
(same as PLNT_S 3715). Laboratory exercises emphasizing external insect anatomy, classification, and identification (to family level). Preparation of an insect collection is required.

Credit Hours: 2
Prerequisites: PLNT_S 3710 (or BIO_SC 3710) or concurrent registration

BIO_SC 3750: General Microbiology
Explores the diversity and adaptive capabilities of microbial life. Topics include bacterial cell structure, metabolism, genetics, and ecology.

Credit Hours: 3
Prerequisites: BIO_SC 2200 and BIO_SC 2300
Recommended: grades in C range for prerequisites

BIO_SC 3760: Microbiology Laboratory
This is a hands-on microbiology lab course which provides students with training in microbiology techniques, data collection and analysis, writing a research proposal and completing an independent project.

Credit Hours: 2
Prerequisites: BIO_SC 3750 or MICROB 3200

BIO_SC 3780: Genetics Laboratory
Experimental genetic studies of Drosophila, corn and microorganisms.

Credit Hours: 2
Prerequisites: C range grade or better in BIO_SC 2200 or instructor's consent

BIO_SC 4002: Topics in Biological Science - Biological Science
Selected topics not in regularly offered courses. May be repeated up to 2 times for credit.

Credit Hour: 1-3
Prerequisites: senior standing

BIO_SC 4006: Topics in Biological Science - Mathematical Science
Selected topics not in regularly offered courses. May be repeated up to 2 times for credit.

Credit Hour: 1-3

BIO_SC 4085: Problems in Biological Sciences
Individual supervised work to supplement regularly organized courses in biology; introduction to research. Selected sections of this course may be graded either on A-F or S/U basis only.

Credit Hour: 1-3
Prerequisites: instructor's consent
Recommended: Junior Standing

BIO_SC 4085W: Problems in Biological Sciences - Writing Intensive
Individual supervised work to supplement regularly organized courses in biology; introduction to research. Selected sections of this course may be graded either on A-F or S/U basis only.

Credit Hour: 1-3
Prerequisites: instructor's consent
Recommended: Junior Standing

BIO_SC 4320: Molecular Plant Physiology
(same as PLNT_S 4320; cross-leveled with BIO_SC 7320, PLNT_S 7320). Modern physiology of higher plants using common cultivated plants as examples.

Credit Hours: 3
Prerequisites: junior standing, Sciences/Engineering; one course in Biological Sciences and Physics/Chemistry; or instructor's consent

BIO_SC 4328: Introductory Radiation Biology
(same as NU_ENG 4328, RADIOL 4328; cross-leveled with BIO_SC 7328, NU_ENG 7328, RADIOL 7328). Concepts of ionizing radiations, their actions on matter through effects on simple chemical systems, biological molecules, cell, organisms, man.

Credit Hours: 3
Prerequisites: junior standing, Sciences/Engineering; one course in Biological Sciences and Physics/Chemistry; or instructor's consent

BIO_SC 4400: Plant Anatomy
(same as PLNT_S 4400; cross-leveled with BIO_SC 7400, PLNT_S 7400). Comparative structure, growth of meristems; development, structure of important cell types, tissues, tissue systems; comparative anatomy of stem, root, leaf. Emphasizes anatomy of gymnosperms, angiosperms. Includes lab.

Credit Hours: 4
Prerequisites: BIO_SC 1200 or BIO_SC 1500

BIO_SC 4500: Neurobiology
(cross-leveled with BIO_SC 7500). Vertebrate and invertebrate neurobiology, including cell and molecular biology of the neuron, neurophysiology, neuroanatomy, neuroethology and developmental neurobiology.
Credit Hours: 3
Prerequisites: BIO_SC 2300 or instructor's consent
Recommended: BIO_SC 3700

BIO_SC 4560: Sensory Physiology and Behavior
(cross-leveled with BIO_SC 7560). Basic principles of coding and integration of sensory stimuli; neural correlates of animal behavior; environmental influences on postnatal sensory development. Graded on A-F basis only.
Credit Hours: 3
Prerequisites: BIO_SC 2300 or instructor's consent
Recommended: BIO_SC 3700

BIO_SC 4590: Computational Neuroscience
(same as ECE 4590, BIOL_EN 4590, BME 4590; cross-leveled with ECE 7590, BIOL_EN 7590, BIO_SC 7590). An interdisciplinary course with a strong foundation in quantitative sciences for students in biological and behavioral science and an introduction to experimental methods for students from quantitative sciences.
Credit Hours: 4
Prerequisites: BIO_SC 1010 or BIO_SC 1500; MATH 1500

BIO_SC 4600: Evolution
Surveys various processes in organic evolution and underlying genetic mechanisms.
Credit Hours: 3
Prerequisites: BIO_SC 2200

BIO_SC 4640: Behavioral Biology
(cross-level with BIO_SC 7640). Comparative study of animal ethology. Principles of animal ethology illustrated in different animal phyla. May be taken with Laboratory for 4 credits.
Credit Hour: 3-4
Prerequisites: BIO_SC 1500
Recommended: one additional upper-level course in Biological Sciences or Psychology

BIO_SC 4642: Animal Communication
Physical properties of sensory stimuli, receptor mechanisms, functional significance of communication behavior, and multidisciplinary and experimental approaches to current research in animal communication.
Credit Hours: 3
Prerequisites: BIO_SC 3400 or BIO_SC 4600

BIO_SC 4670: Avian Ecology
(cross-level with BIO_SC 7670). Advanced examination of ecological patterns in birds. Explores the environmental factors affecting the evolution of avian behavior, morphology, community structure and distribution.
Credit Hours: 3
Prerequisites: BIO_SC 2600 or BIO_SC 3650

BIO_SC 4950: Undergraduate Research in Biology
Individually directed field or laboratory research for upperclass students under faculty supervision. Project must be arranged by student and faculty member prior to registration. May be repeated to a maximum of 6 hours.
Credit Hour: 1-3
Prerequisites: instructor's consent
Recommended: Overall GPA 2.75; 20 hours of Biological Sciences and/or Chemistry

BIO_SC 4950H: Honors Research in Biology
Individually directed field or laboratory research for upper-level Honors students, in consultation with a faculty member. Project must be arranged by student and faculty member prior to registration. May be repeated for credit. Graded on A-F basis only.
Credit Hour: 1-3
Prerequisites: overall GPA 3.3; instructor's consent; biology or microbiology major. Honors eligibility required

BIO_SC 4952: Undergraduate Research in Biology
Continuation of research program. Successful completion requires public presentation and leads to degree with Honors in biological sciences. May be repeated for credit for maximum of 6 hours. Graded on A-F basis only.
Credit Hour: 1-3
Prerequisites: BIO_SC 4950; overall GPA 2.75; instructor's consent
Recommended: one additional upper-level course in Biological Sciences or Psychology

BIO_SC 4952H: Honors Research in Biology
Continuation of research program. Successful completion requires public presentation and leads to degree with Honors in biological sciences. May be repeated for credit for maximum of 6 hours. Graded on A-F basis only.
Credit Hour: 1-3
Prerequisites: BIO_SC 4950H; overall GPA 3.3; instructor's consent.
Recommended: one additional upper-level course in Biological Sciences or Psychology

BIO_SC 4960: Special Readings in Biological Sciences
Independent readings and discussions of topics in biology selected in consultation with supervising faculty member. Selected sections of this course may be graded either on A-F or S/U basis only.
Credit Hour: 1-3
Prerequisites: senior standing in Biological Sciences and instructor's consent

BIO_SC 4972: Developmental Biology
Analysis of the molecular, genetic, cellular, and morphological processes responsible for phenotypic changes in developing organisms. A variety of experimental systems are discussed to identify common mechanisms used by developing organisms.
Credit Hours: 3
Prerequisites: BIO_SC 2200, BIO_SC 2300, CHEM 2100

BIO_SC 4972W: Developmental Biology
Analysis of the molecular, genetic, cellular, and morphological processes responsible for phenotypic changes in developing organisms. A variety of experimental systems are discussed to identify common mechanisms used by developing organisms.
Credit Hours: 3
Prerequisites: BIO_SC 2200, BIO_SC 2300, CHEM 2100
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
<th>Credit Hours</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO_SC 4976</td>
<td>Molecular Biology</td>
<td>Molecular mechanisms of DNA replication, mutation, recombination and gene expression in prokaryotes, eukaryotes, and their viruses; gene fine structure; genetic engineering.</td>
<td>3</td>
<td>BIO_SC 2200 and BIO_SC 2300</td>
</tr>
<tr>
<td>BIO_SC 4978</td>
<td>Cancer Biology</td>
<td>The cellular and molecular basis of cancer, with emphasis on the application of genomics, proteomics, and genetic manipulations in model organisms to the study of cancer biology.</td>
<td>3</td>
<td>BIO_SC 2200 and BIO_SC 2300</td>
</tr>
<tr>
<td>BIO_SC 4978</td>
<td>Human Inherited Diseases</td>
<td>Analysis of the molecular and cellular mechanisms underlying inherited diseases in humans. Topics include genetics of sex determination, metabolic disorders, cancer, blood groups, transplantation, AIDS.</td>
<td>3</td>
<td>BIO_SC 2200 and BIO_SC 2300</td>
</tr>
<tr>
<td>BIO_SC 4982</td>
<td>Mammalian Reproductive Biology</td>
<td>Adult reproductive anatomy, physiology and behavior; gametogenesis and fertilization; placentaion; sexual differentiation; parturition; maternal behavior and lactation; puberty; reproductive aging; reproductive ecology.</td>
<td>3</td>
<td>junior standing</td>
</tr>
<tr>
<td>BIO_SC 4983</td>
<td>Molecular Ecology</td>
<td>Application of molecular genetic techniques to topics in ecology and population biology such as sex ratios, dispersal, mating systems, biogeography and conservation genetics.</td>
<td>4</td>
<td>BIO_SC 3400 or BIO_SC 2200 and BIO_SC 3650</td>
</tr>
<tr>
<td>BIO_SC 4984</td>
<td>Vertebrate Histology and Microscopic Anatomy</td>
<td>Microscopic anatomy of vertebrate tissues and organs. Includes lab.</td>
<td>5</td>
<td>BIO_SC 3700, or equivalent</td>
</tr>
<tr>
<td>BIO_SC 4986</td>
<td>Nerve Cells and Behavior</td>
<td>The cellular basis of behavior. Molecular and cellular properties of nerve cells, as related to behavior, will be represented and discussed.</td>
<td>3</td>
<td>BIO_SC 3700 or instructor's consent</td>
</tr>
<tr>
<td>BIO_SC 4990</td>
<td>Topics in Biological Sciences</td>
<td>Advanced topics not in regularly offered courses. May be repeated for credit. Graded on A-F basis only.</td>
<td>1-6</td>
<td>BIO_SC 3700 or equivalent</td>
</tr>
<tr>
<td>BIO_SC 7002</td>
<td>Vertebrate Histology and Microscopic Anatomy</td>
<td>Microscopic anatomy of vertebrate tissues and organs. Includes lab.</td>
<td>5</td>
<td>BIO_SC 3700, or equivalent</td>
</tr>
<tr>
<td>BIO_SC 7320</td>
<td>Molecular Plant Physiology</td>
<td>Modern physiology of higher plants using common cultivated plants as examples. May be taken with or without laboratory.</td>
<td>3</td>
<td>BIO_SC 1200 or BIO_SC 1500 and 5 hours Chemistry</td>
</tr>
</tbody>
</table>
BIO_SC 7328: Introductory Radiation Biology
(same as NU_ENG 7328, RADIOL 7328, V_M_S 7328; cross-leveled
with BIO_SC 4328, NU_ENG 4328, RADIOL 4328). Concepts of ionizing
radiations, their actions on matter through effects on simple chemical
systems, biological molecules, cell, organisms, man.
Credit Hours: 3
Prerequisites: Sciences/Engineering; one course in Biological Sciences
and Physics/Chemistry; or instructor's consent

BIO_SC 7400: Plant Anatomy
(same as PLNT_S 7400; cross-leveled with BIO_SC 4400, PLNT_S
4400). Comparative structure, growth of meristems; development,
structure of important cell types, tissues systems; comparative anatomy
of stem root, leaf. Emphasizes anatomy of gymnosperms, angiosperms.
Includes lab. Graded on A-F basis only.
Credit Hours: 4
Prerequisites: BIO_SC 1200 or equivalent

BIO_SC 7500: Neurobiology
(cross-leveled with BIO_SC 4500). Vertebrate and invertebrate
neurobiology, including cell and molecular biology of the neuron,
neurophysiology, neuranatomy, neurothology and developmental biology.
Graded on A-F basis only.
Credit Hours: 3
Prerequisites: BIO_SC 2300 or BIO_SC 3700

BIO_SC 7560: Sensory Physiology and Behavior
(cross-leveled with BIO_SC 4560). Basic principles of coding and
integration of sensory stimuli; neural correlates of animal behavior;
environmental influences on postnatal sensory development.
Credit Hours: 3
Prerequisites: BIO_SC 4500 or equivalent

BIO_SC 7590: Computational Neuroscience
(same as BIOL_EN 7590, ECE 7590; cross-leveled with BIO_SC 4590,
BIOL_EN 4590, ECE 4590, BME 4590). An interdisciplinary course with
a strong foundation in quantitative sciences for students in biological and
behavioral sciences and an introduction to experimental methods for
students from quantitative sciences.
Credit Hours: 4
Prerequisites: BIO_SC 1010 or BIO_SC 1500, MATH 1500

BIO_SC 7640: Behavioral Biology
(cross-leveled with BIO_SC 4640). Comparative study of animal ethology.
Principles of animal ethology illustrated in different animal phyla.
Credit Hours: 3
Prerequisites: BIO_SC 1500 and one additional upper-level course in
Biological Sciences or Psychology

BIO_SC 7670: Avian Ecology
(cross-leveled with BIO_SC 4670). Advanced examination of ecological
patterns in birds. Explores the environmental factors affecting the
evolution of avian behavior, morphology, community structure and
distribution.

BIO_SC 7976: Molecular Biology
(cross-leveled with BIO_SC 4976). Molecular mechanisms of DNA
replication, mutation, recombination and gene expression in prokaryotes,
eukaryotes, and their viruses; gene fine structure; genetic engineering.
Credit Hours: 3
Prerequisites: BIO_SC 2200 and BIO_SC 2300

BIO_SC 7978: Cancer Biology
(same as BIOCHM 7978; cross-leveled with BIO_SC 4978, BIOCHM
4978). The course will cover major molecular and cellular aspects of
cancer. Students will read original research articles, present overviews
and lead class discussions.
Credit Hours: 3
Prerequisites: BIOCHM 4270, BIO_SC 2300 and BIO_SC 4976 or
equivalent

BIO_SC 7982: Human Inherited Diseases
Advanced analysis of the molecular basis for genetic disorders in
humans. Topics will include both Mendelian and complex traits with
readings from the primary literature. Graded on A-F basis only.
Credit Hours: 3
Prerequisites: BIO_SC 2200 and instructor's consent

BIO_SC 7986: Neurology of Motor Systems
(cross-leveled with BIO_SC 4986). Examination of the function of
neural networks at all levels, from properties of single neurons to large
collections of neural elements. Graded on A-F basis only.
Credit Hours: 3
Prerequisites: BIO_SC 3700

BIO_SC 8050: Professional Survival Skills
Introduction to resources, facilities, and communication skills for
professional careers in biological sciences. Topics include computer
resources, accessing scientific literature, making slides and figures,
grantsmanship, resume preparation, manuscript review, and research
presentation.
Credit Hour: 1-99
Prerequisites: instructor's consent

BIO_SC 8002: Topics in Biological Sciences- Biological/Physical/
Mathematics
Advanced topics not in regularly offered courses.
Credit Hour: 1-6

BIO_SC 8050: Professional Survival Skills
Introduction to resources, facilities, and communication skills for
professional careers in biological sciences. Topics include computer
resources, accessing scientific literature, making slides and figures,
grantsmanship, resume preparation, manuscript review, and research
presentation.
Credit Hours: 2
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
<th>Credit Hours</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO_SC 8060</td>
<td>Ethical Conduct of Research</td>
<td>Discussion of ethical issues in biological research, including the rules and conventions for appropriate research conduct. Graded on S/U basis only.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BIO_SC 8070</td>
<td>Professional Communication Development</td>
<td>The purpose of this course is to develop professional communication skills in students that are planning to attend (or are in their first year of) graduate training. Some sections may be offered with A-F or S/U grading option.</td>
<td>1-2</td>
<td></td>
</tr>
<tr>
<td>BIO_SC 8085</td>
<td>Problems in Biological Sciences</td>
<td>Research not expected to terminate in thesis, or individual advanced study in special subjects.</td>
<td>1-99</td>
<td>Instructor's consent</td>
</tr>
<tr>
<td>BIO_SC 8087</td>
<td>Seminar</td>
<td>Current topics in the biological sciences. Open to all graduate students. Graded S/U basis only.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BIO_SC 8090</td>
<td>Research in Biological Sciences</td>
<td>Research leading to thesis. Graded on S/U basis only.</td>
<td>1-99</td>
<td>Instructor's consent</td>
</tr>
<tr>
<td>BIO_SC 8187</td>
<td>Seminar in Areas of Specialization</td>
<td>Offered each semester in one or more specialized sections followed by the topic title of the seminar. Graded on S/U basis only.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BIO_SC 8300</td>
<td>Advanced Plant Genetics</td>
<td>Genetic approaches to molecular and biochemical studies in maize, wheat, and Arabidopsis.</td>
<td>3</td>
<td>General Genetics and course in Cell Biology or Plant Physiology</td>
</tr>
<tr>
<td>BIO_SC 8310</td>
<td>Fungal Genetics and Biology</td>
<td>Introduction to fungal research, with an emphasis on genetics, biochemistry, cell and molecular biology, and pathogenicity of fungi. Graded A-F only.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BIO_SC 8320</td>
<td>Developmental Genetics</td>
<td>An overview of various developing systems amenable to classical and molecular genetic analysis. Specific developmental phenomena will be introduced in particular model systems, with an emphasis on experimental approaches used to address the underlying mechanisms.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BIO_SC 8375</td>
<td>Pharmacogenomics</td>
<td>Introduction to the study of the effects of genetic variation on drug response.</td>
<td>3</td>
<td>Instructor's consent required</td>
</tr>
<tr>
<td>BIO_SC 8440</td>
<td>Integrative Neuroscience I</td>
<td>(same as NEUROSCI 8440). Organization, development and function of the nervous system focusing on cellular and molecular processes. Graded on A-F basis only.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BIO_SC 8442</td>
<td>Integrative Neuroscience II</td>
<td>(same as NEUROSCI 8442). Organization and function of the nervous system at the systems level to examine processes of behavior and cognition. Graded on A-F basis only.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BIO_SC 8460</td>
<td>Advanced Cancer Biology</td>
<td>A study of the molecular basis of cancer, including topics in tumor cell biology, interactions between cancer cells and normal cells, mechanisms of metastasis, and novel approaches to development of new chemotherapies.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BIO_SC 8505</td>
<td>Introduction to Plant Stress Biology</td>
<td>(same as PLNT_S 8505). This course is part of a series that aims to provide a solid conceptual foundation to interdisciplinary plant biology for graduate students with a research emphasis in plant biology. This course examines the basic concepts and techniques used to understand plant stress biology. Graded on A-F basis only</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>BIO_SC 8600</td>
<td>Design of Ecological Experiments</td>
<td>Principles of experimental design in the context of ecological, behavioral, and evolutionary research.</td>
<td>2</td>
<td>STAT 1400</td>
</tr>
<tr>
<td>BIO_SC 8610</td>
<td>Current Concepts in Conservation Biology</td>
<td>Survey of current concepts in conservation biology literature. Discussions will provide students with an appreciation of the historical development of concepts, the interdisciplinary nature of conservation problems, and the research required for effective solutions.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>BIO_SC 8633</td>
<td>Molecular and Network Evolution</td>
<td>(same as AN_SCI 8633). Evolution of biological macromolecules and networks, including sequence analysis algorithms and theory, phylogenetics, gene duplication, genome evolution, principles of biological networks. Development of computational skills emphasized.</td>
<td>3</td>
<td>Instructor's consent required</td>
</tr>
<tr>
<td>BIO_SC 8700</td>
<td>Ecological Genetics</td>
<td>Population genetics and evolutionary theory, with emphasis on studies of natural populations.</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites: BIO_SC 2200 and BIOCHM 7270, BIOCHM 7272, or equivalent
BIO_SC 8720: Speciation
Advanced discussion of species concepts and the processes of formation of species.
Credit Hours: 3
Prerequisites: BIO_SC 2200, BIO_SC 3100 or BIO_SC 3650, and STAT 1400 or equivalent

BIO_SC 8724: College Science Teaching
(same as LTC 8724, PHYSCS 8310, ASTRON 8310). Study of learner characteristics, teaching strategies, and research findings related to teaching science at the post-secondary level.
Credit Hours: 3
Prerequisites: BIO_SC 2200 and BIO_SC 4600

BIO_SC 8725: Science Outreach: Public Understanding of Science
(same as AN_SCI 8725, PHYSCS 8350, LTC 8725). Development of presentations to adult audiences on the science underlying issues of current interest. May be repeated for credit.
Credit Hour: 1-2

BIO_SC 8726: Integrating Science with Outreach
(same as LTC 8726). This course provides an opportunity for students to earn credit for outreach activities in the community. Students will capitalize on their area of study and scientific expertise in developing, implementing, and evaluating related outreach activities. May be repeated for credit.
Credit Hour: 1-6

BIO_SC 8740: Plant/Animal Interactions
Discussion and lectures on herbivory, pollination biology, and dynamics of fruit and seed dispersal from ecological and evolutionary perspectives.
Credit Hours: 3
Prerequisites: BIO_SC 3650 or BIO_SC 4660 or equivalent

BIO_SC 9090: Research in Biological Sciences
Research leading to dissertation. Graded on S/U basis only.
Credit Hour: 1-99
Prerequisites: instructor's consent

BIO_SC 9432: Molecular Biology II
(same as MICROB 9432, BIOCHM 9432) Detailed experimental analysis of eukaryotic cellular and molecular biology relevant to cellular and viral gene expression, post-transcriptional and post-translational modifications and genome replication. Models for developmental genetic analysis and genetic determinants controlling processes utilizing the current literature will be examined.
Credit Hours: 4
Prerequisites: MICROB 9430

BIO_SC 9468: Molecular Biology of Plant Growth and Development
(same as BIOCHM 9468). Molecular biology of plant hormones, signal transduction, environmental signals.