NAT_R 1040: Conservation Studies
A one-week field experience in natural resource management issues—soil and water conservation, air pollution, fish and wildlife habitat requirements, importance of forest ecosystems. Limited to high school students who have completed their junior year and taken the PSAT or equivalent. Graded on S/U basis only.

Credit Hours: 1

NAT_R 1060: Ecology and Conservation of Natural Resources
Introduction to the principles of resource and conservation describing the foundation of the variety of natural resources and conservation practices used to protect and maintain these resources.

Credit Hours: 3

NAT_R 1070: Ecology and Renewable Resource Management
Introduction to ecological principles and their relationship to resource use and management.

Credit Hours: 3
Prerequisites: restricted to Natural Resources majors

NAT_R 2002: Topics in Natural Resources - Biological/Physical/Mathematical
Organized study of selected topics. Subjects and credit may vary from semester to semester.

Credit Hours: 1-99

NAT_R 2080: Outdoor Recreation Consortium
Outdoor Recreation Consortium is a collaborative course taught by MU, North Carolina State University, Penn State University, East Carolina University, Texas A&M University and Western Illinois University. The course uses Great Smoky Mountains National Park as a case study for understanding the relationship between ecosystem management, natural resource management, tourism, and outdoor recreation. This course is based around a one week trip to the Smokies. Graded on A-F basis only.

Credit Hours: 2
Prerequisites: NAT_R 1070 or P_R_TR 2111 or ENV_SC 1100 and permission of instructor

NAT_R 2160: Issues in Natural Resources and the Environment
This course provides an introduction to ecological and environmental challenges in natural resource management in our rapidly changing world. Topical discussions will provide students with informed perspectives of several contemporary issues that affect the sustainability of our natural resources.

Credit Hours: 3
Recommended: This course is recommended as an introductory course for non-science majors

NAT_R 2325: Introduction to Geographic Information Systems
Cover basic theories and techniques of GIS; including vector and raster data representation, vector data digitizing, attribute data input, map projection, layout database manipulation, terrain analysis and spatial interpolation.

Credit Hours: 3

NAT_R 3110: Natural Resource Biometrics
Sampling methods and analysis as applied to a variety of natural resources, including fisheries, range, recreation, forests, water and wildlife.

Credit Hours: 3

NAT_R 3290: Hydrologic Measurement Techniques
Students will be introduced to field methods and tools used by water resource and environmental science professionals. Students will sample and measure hydrologic and environmental variables, learn about data storage systems, and access and analyze data. Course may be repeated for credit. Graded on A-F basis only.

Credit Hours: 1
Prerequisites: MATH 1100 or permission of instructor

NAT_R 3290W: Hydrologic Measurement Techniques - Writing Intensive
Students will be introduced to field methods and tools used by water resource and environmental science professionals. Students will sample and measure hydrologic and environmental variables, learn about data storage systems, and access and analyze data. Course may be repeated for credit. Graded on A-F basis only.

Credit Hours: 1
Prerequisites: MATH 1100 or permission of instructor

NAT_R 4001: Topics in Natural Resources
Organized study of selected topics. Subjects may vary from semester to semester.

Credit Hours: 1-99

NAT_R 4024: Foundations of Environmental Education
(same as ENV_SC 4024; cross-leveled with NAT_R 7024). This course provides a theoretical foundation to environmental education (EE). The purpose of this course is to develop the knowledge and skills for developing quality, age-appropriate EE for students in both formal and non-formal education setting. The emphasis is on EE curriculum materials, resources, and programs that can be used with students in settings at classrooms, nature centers, museums, and parks. This course involves training in the Missouri Department of Conservation Discover Nature School educational materials, and in observing and teaching EE lessons in a local nature center. Graded on A-F basis only.

Credit Hours: 3
Prerequisites: BIO_SC 1010 or ENV_SC 1100 or NAT_R 1060 or NAT_R 1070 or NAT_R 2160 or Instructor's consent

NAT_R 4024W: Foundations of Environmental Education - Writing Intensive
Students will be introduced to field methods and tools used by water resource and environmental science professionals. Students will sample and measure hydrologic and environmental variables, learn about data storage systems, and access and analyze data. Course may be repeated for credit. Graded on A-F basis only.

Credit Hours: 1
Prerequisites: MATH 1100 or permission of instructor

NAT_R 4100: Lake Ecology
(same as ENV_SC 4100; cross-leveled with NAT_R 7100). Ecology of inland waters with emphasis on productivity. Graded on A-F basis only.

Credit Hours: 3
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
<th>Credit Hours</th>
<th>Recommended/prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAT_R 4300</td>
<td>Methods in Aquatic Ecology</td>
<td>(same as ENV_SC 4300; cross-leveled with ENV_SC 7300, NAT_R 7300). Methods used for quantitative assessment of water quality and quantity in inland waters. Graded on A-F basis only.</td>
<td>3</td>
<td>senior standing or BIO_SC 3650</td>
</tr>
<tr>
<td>NAT_R 4353</td>
<td>Natural Resource Policy/Administration</td>
<td>Principles of policy formation and analysis; relationship of organizational goals to structure, planning and budgeting. Historical background of present natural resource policies; examines current policy issues.</td>
<td>3</td>
<td>instructor's consent</td>
</tr>
<tr>
<td>NAT_R 4365</td>
<td>GIS Applications</td>
<td>Introduces logical thinking and techniques in applying GIS to practical problems. Covers general GIS functionalities, Arc View Spatial Analyst including georeference, terrain analysis, hydrological analysis, grid, and remote sensing image processing.</td>
<td>3</td>
<td>GEOG 3040, NAT_R 1080 and NAT_R 1090</td>
</tr>
<tr>
<td>NAT_R 4385</td>
<td>Landscape Ecology and GIS Analysis I</td>
<td>(same as GEOG 4810). Examination of the landscape-scale approach to biodiversity, ecosystem dynamics, and habitat management. Particular emphasis on the use of Geographic Information Systems to analyze the spatial dimension of ecological patterns and processes.</td>
<td>3</td>
<td>GEOG 3040</td>
</tr>
<tr>
<td>NAT_R 7001</td>
<td>Topics in Natural Resources</td>
<td>Organized study of selected topics. Subjects may vary from semester to semester.</td>
<td>1-99</td>
<td></td>
</tr>
<tr>
<td>NAT_R 7024</td>
<td>Foundations of Environmental Education</td>
<td>(cross-leveled with NAT_R 4024, ENV_SC 4024). This course provides a theoretical foundation to environmental education (EE). The purpose of this course is to develop the knowledge and skills for developing quality, age-appropriate EE for students in both formal and non-formal education setting. The emphasis is on EE curriculum materials, resources, and programs that can be used with students in settings at classrooms, nature centers, museums, and parks. This course involves training in the Missouri Department of Conservation Discover Nature School educational materials, and in observing and teaching EE lessons in a local nature center. Graded on A-F basis only.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NAT_R 7100</td>
<td>Lake Ecology</td>
<td>(same as ENV_SC 7100; cross-leveled with ENV_SC 4100 and NAT_R 4100). Ecology of inland waters with emphasis on productivity. Graded on A-F basis only.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NAT_R 7353</td>
<td>Natural Resource Policy/Administration</td>
<td>Principles of policy formation and analysis; relationship of organizational goals to structure, planning and budgeting. Historical background of present natural resource policies; examines current policy issues.</td>
<td>3</td>
<td>Senior standing or BIO_SC 3650 and ENV_SC 4100 or NAT_R 4100 or NAT_R 4200 or FOREST 4390 or NAT_R 3400</td>
</tr>
<tr>
<td>NAT_R 7365</td>
<td>GIS Applications</td>
<td>Introduces logical thinking and techniques in applying GIS to practical problems. Cover general GIS functionalities, Arc View Spatial Analyst including georeference, terrain analysis, hydrological analysis, grid, and remote sensing image processing.</td>
<td>3</td>
<td>GEOG 3040, NAT_R 1080 and NAT_R 1090, or instructor's consent</td>
</tr>
<tr>
<td>NAT_R 8001</td>
<td>Topics in Natural Resources</td>
<td>Organized study of selected topics. Subjects may vary from semester to semester.</td>
<td>1-99</td>
<td></td>
</tr>
<tr>
<td>NAT_R 8050</td>
<td>Masters Non-Thesis Research in Natural Resources</td>
<td>Research credits associated with a non-thesis M.S. project. May be repeated for credit. Graded on S/U basis only.</td>
<td>1-10</td>
<td>restricted to Masters students in the School of Natural Resources</td>
</tr>
<tr>
<td>NAT_R 8090</td>
<td>Master Thesis Research in Natural Resources</td>
<td>Research credits leading to M.Sc. thesis. May be repeated for credit. Graded on S/U basis only.</td>
<td>1-10</td>
<td>Restricted to Masters students in the School of Natural Resources</td>
</tr>
<tr>
<td>NAT_R 8290</td>
<td>Hydrologic Measurement and Synthesis</td>
<td>Students are introduced to methods fundamental to measuring hydrologic processes, and assessing physical data, including field measurement, and data logging and acquisition information systems. Students will gain experience analyzing and synthesizing hydrologic data using tools commonly used by water resource professionals. May be repeated for credit. Graded on A-F basis only.</td>
<td>2</td>
<td>MATH 1100, STAT 2530, PHYSCS 1210. If deficient in prerequisite courses, or unsure of qualification, contact instructor for consent</td>
</tr>
<tr>
<td>NAT_R 8325</td>
<td>Introduction to Geographic Information Systems</td>
<td>Cover theories and techniques of GIS; including vector and raster data representation, vector data digitizing, attribute data input, map projection, layout database manipulation, terrain analysis and spatial interpolation.</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
NAT_R 8395: Landscape Ecology and GIS Analysis II
(same as GEOG 8815). Provide students with principles and applications of landscape ecology and firm understandings of spatial analysis techniques using GIS. Discuss metrics for spatial pattern and models for landscape-scale dynamics.

Credit Hours: 3
Prerequisites: Instructor's consent

NAT_R 9090: Dissertation Research in Natural Resources
Research leading to a dissertation and Ph.D. in the School of Natural Resources. Graded on S/U basis only.

Credit Hour: 1-10
Prerequisites: Restricted to PhD students in the School of Natural Resources

NAT_R 9490: Ecohydrology: Contemporary Topics
A series of discussions centered on primary literature within disciplines relevant to the participants. All Natural Resources disciplines are encouraged to participate (e.g., ecology, wildlife, fisheries, recreation/tourism, hydrology, atmospheric sciences, soils, etc.) with emphasis on interdisciplinary research (i.e. integrated natural, social and/or physical scientific research). May be repeated for credit. Graded on A-F basis only.

Credit Hour: 1