<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
<th>Credit Hours</th>
<th>Prerequisites/Recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOIL 2100</td>
<td>Introduction to Soils (same as PLNT_S 2100)</td>
<td>Introduction to soil sciences with emphasis placed on physical, biological, and chemical properties and application to land use, plant growth and environmental problems.</td>
<td>3</td>
<td>3 hours of Chemistry</td>
</tr>
<tr>
<td>SOIL 2106</td>
<td>Soil Science Laboratory</td>
<td>Laboratory application of fundamental soil science concepts.</td>
<td>2</td>
<td>SOIL 2100</td>
</tr>
<tr>
<td>SOIL 3001</td>
<td>Topics in Soil Science</td>
<td>Organized study of selected topics in soil science.</td>
<td>1-99</td>
<td></td>
</tr>
<tr>
<td>SOIL 3085</td>
<td>Problems in Soil Science</td>
<td>Special individualized research projects or readings in soil science.</td>
<td>1-99</td>
<td></td>
</tr>
<tr>
<td>SOIL 3290</td>
<td>Soils and the Environment (same as ENV_SC 3290)</td>
<td>Addresses the role of soils and soil properties on environmental pollution and management. Emphasis will be placed on carbon, nitrogen, phosphorus, and sulfur transformations and transport in natural and disturbed ecosystems and soil management practices and technology to prevent or remediate environmental pollution.</td>
<td>3</td>
<td>SOIL 2100 and ENGLISH 1000</td>
</tr>
<tr>
<td>SOIL 3290W</td>
<td>Soils and the Environment - Writing Intensive</td>
<td>Addresses the role of soils and soil properties on environmental pollution and management. Emphasis will be placed on carbon, nitrogen, phosphorus, and sulfur transformations and transport in natural and disturbed ecosystems and soil management practices and technology to prevent or remediate environmental pollution.</td>
<td>3</td>
<td>SOIL 2100 and ENGLISH 1000</td>
</tr>
<tr>
<td>SOIL 4001</td>
<td>Topics in Soil Science</td>
<td>Organized study of selected topics in soil science.</td>
<td>1-99</td>
<td></td>
</tr>
<tr>
<td>SOIL 4085</td>
<td>Problems in Soil Science</td>
<td>Special individualized non-thesis research projects or readings in soil science.</td>
<td>1-99</td>
<td></td>
</tr>
<tr>
<td>SOIL 4305</td>
<td>Environmental Soil Physics (same as ENV_SC 4305)</td>
<td>Study of soil physical properties and processes important in solving environmental problems. Topics include soil solids, water content and energy, and transport of water, solutes, gas and heat.</td>
<td>3</td>
<td>SOIL 2100</td>
</tr>
<tr>
<td>SOIL 4306</td>
<td>Environmental Soil Physics Laboratory (same as ENV_SC 4306)</td>
<td>Introduction to the methodology and equipment for measurement of soil physical properties and processes.</td>
<td>2</td>
<td>SOIL 4305</td>
</tr>
<tr>
<td>SOIL 4308</td>
<td>Soil Conservation</td>
<td>Conservation of soil with respect to topsoil, soil productivity, and fertility.</td>
<td>3</td>
<td>SOIL 2100</td>
</tr>
<tr>
<td>SOIL 4312</td>
<td>Environmental Soil Microbiology</td>
<td>Addresses the role of microbes in nutrient cycling, microbial pesticide/xenobiotic transformation bioremediation, etc.</td>
<td>3</td>
<td>SOIL 2100</td>
</tr>
<tr>
<td>SOIL 4313</td>
<td>Soil Fertility and Plant Nutrition</td>
<td>Explanation of principles of delivery of plant nutrients to plants, discussion of the role of each essential nutrient in crop plants and introduction to the management of soil amendments.</td>
<td>3</td>
<td>SOIL 2100 or instructor's consent</td>
</tr>
<tr>
<td>SOIL 4314</td>
<td>Soil Fertility and Plant Nutrition Laboratory</td>
<td>The application of elementary analytical procedures to the evaluation of the nutrient status of soils and crop plants.</td>
<td>2</td>
<td>SOIL 4313</td>
</tr>
<tr>
<td>SOIL 4318</td>
<td>Environmental Soil Chemistry (same as ENV_SC 4318 and GEOL 4318)</td>
<td>Study of chemical constituents and processes occurring in soils. Topics include soil minerals, and weathering processes, organic matter, solution chemistry, oxidation-reduction reactions and adsorption processes.</td>
<td>3</td>
<td>SOIL 2100 or GEOL 2400, CHEM 1320 and CHEM 1330; junior standing or instructor's consent</td>
</tr>
<tr>
<td>SOIL 4320</td>
<td>Genesis of Soil Landscapes</td>
<td>The co-evolution of soil landscapes. The role of water in the accumulation of parent materials and development of soil horizons. Factors and processes of soil genesis. Distribution of soil in their natural settings.</td>
<td>1-99</td>
<td></td>
</tr>
</tbody>
</table>
SOIL 4360: Precision Agriculture Science and Technology
(same as AG_S_M 4360, PLNT_S 4360; cross-leveled with SOIL 7360, AG_S_M 7360, PLNT_S 7360). Precision agriculture is an information-based approach to farming whereby variability is managed to optimize crop production and reduce environmental pollution. This course provides an overview of precision agriculture technologies (like GIS, GPS, remote sensing), mapping methods, and case studies illustrating decisions and management.

Credit Hours: 4
Recommended: introductory soil science or introductory geology course

SOIL 4940: Soil Science Internship
Supervised professional experience with an approved public or private organization. Course may be repeated for credit. Graded on S/U basis only.

Credit Hour: 1-12
Prerequisites: Soil and Atmospheric Sciences majors only, instructor's consent

SOIL 4950: Undergraduate Research in Soil Science
Research apprenticeship with a faculty mentor. Students are expected to develop initial concept for the research, design experiments, collect data, and analyze data with faculty input, oversight, and guidance.

Credit Hour: 1-4
Prerequisites: SOIL 2100 and SOIL 2106, STAT 2530, or instructor's consent
Recommended: 9 hours of Soil Science with at least 3 hours above the 3000-level

SOIL 7001: Topics in Soil Science
Organized study of selected topics in soil science. Intended for graduate students.

Credit Hour: 1-99

SOIL 7085: Problems in Soil Science
Special individualized non-thesis research projects or readings in soil science.

Credit Hour: 1-99

SOIL 7305: Environmental Soil Physics
(same as ENV_SC 7305). Study of soil physical properties and processes important in solving environmental problems. Topics include soil solids, water content and energy, and transport of water, solutes, gas and heat.

Credit Hours: 3
Prerequisites: SOIL 2100, PHYSCS 1210 or equivalent

SOIL 7306: Environmental Soil Physics Laboratory
(same as ENV_SC 7306). Introduction to the methodology and equipment for measurement of soil physical properties and properties and processes.

Credit Hours: 2
Prerequisites or Corequisites: SOIL 4305

SOIL 7308: Soil Conservation
Conservation of soil with respect to topsoil, soil productivity, and fertility.

Credit Hours: 3
Prerequisites: SOIL 2100
Recommended: AG_S_M 4420

SOIL 7312: Environmental Soil Microbiology
(same as ENV_SC 7312). Microbiology/ecology of life in the soil ecosystem. Emphasis is placed on the role of microbes in nutrient cycling, microbial pesticide/xenobiotic transformations bioremediation, etc.

Credit Hours: 3
Prerequisites: general microbiology, SOIL 2100, or instructor's consent

SOIL 7313: Soil Fertility and Plant Nutrition
(same as PLNT_S 7313). Explanation of principles of delivery of plant nutrients to plants, discussion of the role of each essential nutrient in crop plants and introduction to the management of soil amendments.

Credit Hours: 3
Prerequisites: SOIL 2100 or instructor's consent

SOIL 7314: Soil Fertility and Plant Nutrition Laboratory
(same as PLNT_S 7314). The application of elementary analytical procedures to the evaluation of the nutrient status of soils and crop plants.

Credit Hours: 2
Prerequisites or Corequisites: SOIL 7313

SOIL 7318: Environmental Soil Chemistry
(same as GEOL 7318 and ENV_SC 7318). Study of chemical constituents and processes occurring in soils. Topics include soil minerals, and weathering processes, organic matter, solution chemistry, oxidation-reduction reactions and adsorption processes.

Credit Hours: 3
Prerequisites: SOIL 2100 or GEOL 2400, CHEM 1320 and CHEM 1330; junior standing or instructor's consent

SOIL 7320: Genesis of Soil Landscape
The co-evolution of soil landscapes. The role of water in the accumulation of parent materials and development of soil horizons. Factors and processes of soil genesis. Distribution of soil in their natural settings.

Credit Hours: 4
Prerequisites: introductory soil science or introductory geology or permission of instructor

SOIL 7360: Precision Agriculture Science and Technology
(same as AG_S_M 7360 and PLNT_S 7360; cross-leveled with SOIL 4360, AG_S_M 4360, PLNT_S 7360). Precision agriculture is an information-based approach to farming whereby variability is managed to optimize crop production and reduce environmental pollution. This course provides an overview of precision agriculture technologies (like GIS, GPS, remote sensing), mapping methods, and case studies illustrating decisions and management.

Credit Hours: 3
Prerequisites: PLNT_S 2100 or SOIL 2100, or PLNT_S 2110, or instructor's consent

Recommended: 9 hours of Soil Science with at least 3 hours above the 3000-level
GPS, remote sensing), mapping methods, and case studies illustrating decisions and management.

Credit Hours: 3
Prerequisites: SOIL 2100, PLNT_S 2110 or instructor's consent

SOIL 8001: Topics in Soil Science
Organized study of selected topics in soil science. Intended for graduate students.
Credit Hour: 1-99

SOIL 8085: Problems in Soil Science
Special individualized non-thesis research projects or readings in soil science.
Credit Hour: 1-99

SOIL 8091: Topics in Soil Science
Organized study of selected topics in soil science. Intended for graduate students.
Credit Hour: 1-99

SOIL 8085: Problems in Soil Science
Special individualized non-thesis research projects or readings in soil science.
Credit Hour: 1-99

SOIL 8400: Solute Transport in the Vadose Zone
(same as ENV_SC 8400). Transport of water and solutes in geomedia with emphasis on development of the equations of flow. Evaluation of analytical and numerical solutions to equations describing transport phenomena.
Credit Hours: 3
Prerequisites: ENV_SC 7305 or SOIL 7305

SOIL 8450: Nonthesis Research in Soil Science
Research not expected to terminate in dissertation.
Credit Hour: 1-9

SOIL 8500: Chemistry of the Vadose Zone
(same as ENV_SC 8500). Chemical reactions occurring in geomedia with emphasis on understanding molecular scale processes occurring at the solid-water interface, aqueous geochemistry, and soil organic matter.
Credit Hours: 3
Prerequisites: SOIL 7318 or GEOL 7300 or instructor's consent

SOIL 9001: Topics in Soil Science
Organized study of selected topics in soil science. Intended for graduate students.
Credit Hour: 1-99

SOIL 9085: Problems in Soil Science
Special individualized non-thesis research projects or readings in soil science.
Credit Hour: 1-99

SOIL 9087: Seminar in Soil Science
In-depth development of advanced aspects of soil science through reviews of results of research in progress and current scientific publications.
Credit Hour: 1

SOIL 9090: Doctoral Research in Soil Science
Original investigations in soil science for presentation in a dissertation. Graded on S/U basis only.
Credit Hour: 1-10

SOIL 9407: Advanced Environmental Soil Physics
(same as ENV_SC 9407). Transport of mass and energy through soil with emphasis on development of the equations of flow. Evaluation of analytical and numerical solutions to differential equations describing transport phenomena.
Credit Hours: 3
Prerequisites: SOIL 7305, MATH 4100 or MATH 7100, or equivalent

SOIL 9414: Advanced Soil Fertility
History and application of concepts of fertility and plant nutrition.
Credit Hours: 3
Prerequisites: SOIL 7313 and PLNT_S 7315 or equivalent, 14 hours of college chemistry and five hours of calculus

SOIL 9418: Advanced Environmental Soil Chemistry
(same as ENV_SC 9418). Linking molecular-scale solution-phase and surface reactions with macroscopic chemical processes. Fundamentals of aqueous surface and colloid chemistry will be discussed.
Credit Hours: 3
Prerequisites: SOIL 7318 or GEOL 7300, and CHEM 3300

SOIL 9422: Pedology
Three one-hour lectures. Detailed study of processes of soil horizonization and current topics in soil genesis including quantitative assessment of spatial and temporal variability and application of GIS in landuse planning.
Credit Hours: 3
Prerequisites: SOIL 7320, one statistics course beyond ANOVA