<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_BSCI 5011</td>
<td>Veterinary Anatomy</td>
<td>In-depth study of the structure of the horse, ox, sheep, goat, pig and avian species. (Instructional periods 3 and 4).</td>
<td>3</td>
</tr>
<tr>
<td>V_BSCI 5012</td>
<td>Veterinary Anatomy with Laboratory</td>
<td>Continuation of V_BSCI 5011. In-depth study of the structure of the horse, ox, sheep, goat, pig and avian species. (Instructional periods 3 and 4).</td>
<td>3</td>
</tr>
<tr>
<td>V_BSCI 5020</td>
<td>Developmental Anatomy</td>
<td>Provides a comprehensive and rational interpretation of the intricate mechanisms of normal development to better understanding the complex anatomy of the adult. A substantial portion will be dedicated to commonly encountered congenital abnormalities for each major organ system.</td>
<td>0.5</td>
</tr>
<tr>
<td>V_BSCI 5021</td>
<td>Developmental Anatomy</td>
<td>Provides a comprehensive and rational interpretation of the intricate mechanisms of normal development to better understanding the complex anatomy of the adult. A substantial portion will be dedicated to commonly encountered congenital abnormalities for each major organ system.</td>
<td>0.5</td>
</tr>
<tr>
<td>V_BSCI 5051</td>
<td>Veterinary Gastrointestinal</td>
<td>Continuation of V_BSCI 5504. Physiology of the gastrointestinal tract, exocrine pancreas and liver. Lecture and lab designed to emphasize principles important to the practice of veterinary medicine.</td>
<td>2</td>
</tr>
<tr>
<td>V_BSCI 5052</td>
<td>Veterinary Endocrinology and Reproductive Physiology</td>
<td>Continuation of Veterinary Biomedical Science 5051. Comparative endocrinology and reproductive biology.</td>
<td>2</td>
</tr>
<tr>
<td>V_BSCI 5100</td>
<td>Veterinary Neuroscience</td>
<td>A laboratory and lecture-based course emphasizing the applied anatomy and physiology of the nervous system of domestic animals.</td>
<td>2</td>
</tr>
<tr>
<td>V_BSCI 5500</td>
<td>Veterinary Anatomy with Laboratory</td>
<td>Correlative study of the anatomy of domestic and laboratory animals in which the developmental and gross anatomy are integrated. A segment is devoted to neuroanatomy. Dissection includes the dog, cat and common laboratory animals. (Instructional periods 1 and 2).</td>
<td>3</td>
</tr>
<tr>
<td>V_BSCI 5502</td>
<td>Veterinary Microscopic Anatomy with Laboratory</td>
<td>A study of microscopic anatomy including cytology, histology of basic tissues and microscopic anatomy of cardiovascular, urinary, respiratory systems and the special senses and integument. (Instructional periods 1 and 2).</td>
<td>3</td>
</tr>
<tr>
<td>V_BSCI 5503</td>
<td>Veterinary Microscopic Anatomy</td>
<td>Particular attention to digestive systems, endocrine organs and reproductive systems. (Instructional period 3).</td>
<td>2</td>
</tr>
<tr>
<td>V_BSCI 5504</td>
<td>Veterinary Physiology</td>
<td>This course is designed to provide an opportunity and motivation for the student to acquire an understanding of the physiological principles on which rational therapy in medical practice is based. Topics include: Cellular Neurophysiology, Muscle, Cardiovascular, Renal and Respiratory Physiology. The course also encourages the student to apply these principles in solving problems so that it becomes habitual for him or her to think in terms of ‘mechanisms of action’ as he or she approaches a problem in disturbed physiology.</td>
<td>5</td>
</tr>
<tr>
<td>V_BSCI 5506</td>
<td>Veterinary Molecular and Cellular Biology</td>
<td>(same as V_BSCI 7333) A comprehensive course overviewing molecular and biochemical issues of cell function especially as related to medicine and the underlying molecular causes of disease.</td>
<td>4</td>
</tr>
<tr>
<td>V_BSCI 5507</td>
<td>Veterinary Pharmacology with Laboratory</td>
<td>General principles of pharmacy, pharmacokinetics, and pharmacodynamics, with emphasis on drugs affecting the central and autonomic nervous system, cardiovascular and hematologic systems.</td>
<td>3</td>
</tr>
<tr>
<td>V_BSCI 5508</td>
<td>Veterinary Pharmacology</td>
<td>Continuation of V_BSCI 5507. Antiseptics, autacoids, hemostatics and anticoagulants, fluid and electrolytes, reproductive, endocrine, and gastrointestinal drugs.</td>
<td>2</td>
</tr>
<tr>
<td>V_BSCI 5509</td>
<td>Veterinary Toxicology</td>
<td>(Same as V_BSCI 8509) Local and various systemic clinical responses of domestic animals to foreign chemicals including metals, pesticides, water-and food-borne agents, biotoxins, industrial and plant toxins. The principles, mechanism(s) of action, diagnosis, prevention and treatment of chemical intoxications are also presented.</td>
<td>3</td>
</tr>
</tbody>
</table>
V_BSCI 7333: Veterinary Cell Biology
(same as V_BSCI 5506). Course material stresses cell biology as related to animal health and medical issues. A comprehensive course overviewing molecular and biochemical issues of cell function especially as related to medicine and the underlying molecular causes of disease.

Credit Hours: 4
Prerequisites: instructor's consent

V_BSCI 8085: Problems in Veterinary Biomedical Science
Selected problems and/or topics for advanced study in special areas to meet needs of individual students.

Credit Hour: 1-99

V_BSCI 8090: Research in Veterinary Biomedical Science
Open to graduate students with requisite preparation. Research expected to be presented as a thesis. Graded on a S/U basis only.

Credit Hour: 1-99

V_BSCI 8100: Veterinary Neuroscience
A laboratory and lecture based course emphasizing the applied anatomy and physiology of the nervous system of domestic animals.

Credit Hours: 2
Prerequisites: Restricted to first year veterinary students or graduate students

V_BSCI 8200: Multidisciplinary Approaches to Biomedical Sciences
The goal of this course is to aid the student in developing a multidisciplinary philosophy to problem solving in biomedical research. Methods used in molecular, biochemical, cellular, tissue, organ, and whole animal studies will be emphasized.

Credit Hours: 2
Prerequisites: instructor's consent

V_BSCI 8410: Seminar in Veterinary Biomedical Science
Presentation and discussion of investigations and topics in veterinary anatomy-physiology or related fields, by qualified students, instructors, and guests.

Credit Hour: 1
Prerequisites: departmental consent

V_BSCI 8420: Veterinary Physiology
This course is designed to provide an opportunity and motivation for the student to acquire an understanding of the physiological principles on which rational therapy in medical practice is based. Topics include: Cellular Neurophysiology, Muscle, Cardiovascular, Renal and Respiratory Physiology. The course also encourages the student to apply these principles in solving problems so that it becomes habitual for him or her to think in terms of ‘mechanisms of action’ as he or she approaches a problem in disturbed physiology.

Credit Hours: 5
Prerequisites: BIOCHM 4270 and BIOCHM 4272

V_BSCI 8421: Veterinary Physiology
Continuation of V_BSCI 8420. Physiology of the gastrointestinal tract, exocrine pancreas, liver, endocrine system and reproduction.

Credit Hours: 4

V_BSCI 8509: Veterinary Toxicology
(Same as V_BSCI 5509) Local and various systemic clinical responses of domestic animals to foreign chemicals including metals, pesticides, water-and food-borne agents, biotoxins, industrial and plant toxins. The principles, mechanism(s) of action, diagnosis, prevention and treatment of chemical intoxications are also presented. Graded A-F only.

Credit Hours: 3

V_BSCI 9090: Research in Veterinary Biomedical Sciences
Research in Veterinary Biomedical Sciences. Graded on S/U basis only.

Credit Hour: 1-99

V_BSCI 9425: Microvascular Circulatory Function
(same as MPP 9434). An in-depth study of microcirculatory structure and function in various tissues with emphasis on recent developments in the understanding of the mechanisms involved in nutrient supply, edema formation, lymphatic function and fluid balance.

Credit Hours: 3
Prerequisites: V_BSCI 8420 and V_BSCI 8422 or Mammalian Physiology or equivalent

V_BSCI 9435: Molecular Exercise Biology
(same as MPP 9435). Integrated adaptations of adipose tissue, blood vessels, bone, brain, heart, immune, liver, microbiome, and skeletal muscle to physical training during life. Lifecourse emphasis will be placed upon the role of physical activity during growth and aging in increasing and decreasing, respectively, cardiovascular fitness and strength fitness. The roles of the level of cardiovascular and strength fitness in slowing the onset of chronic diseases and death will be one outcome of the curriculum. Graded on A-F basis only.

Credit Hours: 3
Recommended: Introductory physiology and molecular biology

V_BSCI 9462: Hormone Action
(same as BIOCHM 9462). A lecture course with weekly assigned readings. Topics will include: a description of selected polypeptide, steroid and other hormones and their biological effects; receptors; second messengers; protein phosphorylation in hormone mediation; growth factors; cellular oncogenes.

Credit Hours: 2
Prerequisites: BIOCHM 7272

V_BSCI 9467: Neural Cardiorespiratory Control
(same as MPP 9437). Course objectives include developing a general understanding of CNS mechanisms in the regulation of the cardiovascular and respiratory system, including autonomic, neurohumoral and body fluid homeostatic mechanisms, gaining knowledge of the major advances and topics in the field and becoming familiar with some of the methods used to study CNS cardiorespiratory regulation. Graded on A-F basis only.
Credit Hours: 3
Prerequisites: instructor's consent