Chemical Engineering

Patrick Pinhero, Interim Chair
College of Engineering
W2033 Lafferre Hall
(573) 882-4877
pinherop@missouri.edu
http://engineering.missouri.edu/chemical/

Chemical Engineering at the University of Missouri focuses on education and research involving industrial chemicals, materials, environmental, and life-science processes. We aim to be a reservoir of talent for the research, design, and management of complex process challenges. The Department strives to provide its faculty and students with an environment for research, learning, and professional growth.

The faculty of the MU Department of Chemical Engineering prepares its students for careers in a broad range of fields and to assume leadership roles in society through a well-rounded general and rigorous technical education. The technical curriculum challenges students with a broad education in Chemical Engineering theory and practice, and to improve their skills in problem solving, critical thinking, and appreciation of the relationship between technology and society. Innovative development and use of technology facilitates both research and teaching, creating a diverse, learning environment.

MU Chemical Engineering program aims to develop versatile professionals who can excel in a variety of career environments. Our curriculum is focused on the basic sciences, engineering topics, and problem solving and design. A flexible program offering environmental, material, and biochemical options allows our graduates to move into non-traditional careers as well as traditional chemical engineering. Additionally, we build teamwork and design skills by integrating team design projects, laboratories, and reports into our curriculum.

Faculty

Associate Professor D. G. Retzloff*
Assistant Professor K. D. Hammond**, B. D. Ulery**
Associate Teaching Professor M. A. Myers*
Assistant Teaching Professor S. A. Gheni*, A. Hacioglu*, J. L. Tatarko*
Adjunct Assistant Professor S. Baker**, C. Wan**
Assistant Professor K. D. Hammond**, B. D. Ulery**
Chancellor's Professor P. C. H. Chan*

* Graduate Faculty Member - membership is required to teach graduate-level courses, chair master's thesis committees, and serve on doctoral examination and dissertation committees.
** Doctoral Faculty Member - membership is required to chair doctoral examination or dissertation committees. Graduate faculty membership is a prerequisite for Doctoral faculty membership.

Undergraduate

• BSChE in Chemical Engineering (http://catalog.missouri.edu/undergraduategraduate/collegeofengineering/chemicalengineering/bsche-chemical-engineering)
• with emphasis in Biochemical (http://catalog.missouri.edu/undergraduategraduate/collegeofengineering/chemicalengineering/bsche-chemical-engineering-emphasis-biochemical)
• with emphasis in Environmental (http://catalog.missouri.edu/undergraduategraduate/collegeofengineering/chemicalengineering/bsche-chemical-engineering-emphasis-environmental)
• with emphasis in Materials (http://catalog.missouri.edu/undergraduategraduate/collegeofengineering/chemicalengineering/bsche-chemical-engineering-emphasis-materials)

Advising and Scholarship Information Contact
Paul Chan
W2033 Lafferre Hall
(573) 882-7414
pinherop@missouri.edu
http://engineering.missouri.edu/chemical/

About Chemical Engineering

Established in 1906, MU Chemical Engineering has a long standing commitment to provide quality undergraduate and graduate education. Our department serves the discipline well by providing state of the art research in many cutting edge fields including batteries, biochemical engineering, biomaterials, carbon, ceramics, catalysis, corrosion, electrochemistry, environmental sciences, ionic liquids, materials science, computational modeling & simulation, nanomaterials, nuclear materials, polymers, separations, solar energy, and surface science.
Faculty Research

Currently active research areas include batteries, biochemical engineering, biomaterials, carbon, ceramics, catalysis, corrosion, electrochemistry, environmental sciences, ionic liquids, materials science, computational modeling and simulation, nanomaterials, nuclear materials, polymers, separations, solar energy, and surface science.

Facilities and Resources

There are excellent facilities for research students, including electron microscopy, ultra-high vacuum (UHV) surface science, atomic force microscopy, a heterogeneous catalysis and reaction kinetics laboratory, a heat and mass transport laboratory, an air pollution monitoring and control laboratory, a biochemical engineering laboratory, a computational laboratory, and a transport properties phenomena laboratory. Excellent library facilities provide the latest domestic and international journals specific to chemical engineering and physical sciences research.

Internal Funding

Research and teaching assistantships are available to qualified students for the entire year. The yearly stipend for graduate students range from $17,500 to $20,000, depending on the student’s terminal degree. Assistantships also include a tuition waiver and health insurance. Academically qualified students may receive additional scholarship awards. Grant research assistanships and some industrial and Graduate School fellowships may also be available. Extremely well-qualified students may be eligible for the Robert and Dorcas Holtzsmith Graduate Fellowship.

RA and TA appointments allow for 12 credit hours of advanced study each semester. The applicant’s academic record and research potential determine the financial assistance offered. Students who receive financial assistance are expected to continue their appointment during the summer session as well, as these appointments are year long positions.

CH_ENG 1000: Introduction to Chemical Engineering

Orientation course for freshmen-level students. Introduction to careers and opportunities in chemical engineering, basic engineering principles, simple calculations.

Credit Hours: 2
Prerequisites or Corequisites: MATH 1500, CHEM 1320

CH_ENG 1000H: Introduction to Chemical Engineering - Honors

Orientation course for freshmen-level students. Introduction to careers and opportunities in chemical engineering, basic engineering principles, simple calculations.

Credit Hours: 2
Prerequisites or Corequisites: MATH 1500, CHEM 1320. Honors eligibility required

CH_ENG 1320: Chemistry and Chemical Technology I

Covers fundamental principals of chemistry, gases, engineering materials, electrochemistry, and applications with instruction including numerical modeling. Graded on A/F basis only. May be repeated for credit.

Credit Hours: 3
Prerequisites or Corequisites: MATH 1500

CH_ENG 1330: Chemistry and Chemical Technology II

Covers fundamentals principals of chemistry, gases, engineering materials, electrochemistry, and applications with instruction including numerical modeling. May be repeated for credit. Graded on A/F basis only.

Credit Hours: 3
Prerequisites: CH_ENG 1320 or CHEM 1320 and MATH 1500
Corequisites: MATH 1500

CH_ENG 2001: Advanced Experimental Course

Content and number of credit hours to be listed in Schedule of Courses.

Credit Hour: 1-99
Prerequisites: sophomore standing

CH_ENG 2118: Introduction to Energy Technology and Sustainability

An introductory course on energy technology and those resources and practices that allow for sustainable commercialization. Graded on A-F basis only.

Credit Hours: 3
Prerequisites: sophomore standing in engineering

CH_ENG 2225: Mass and Energy Balance

Industrial stoichiometry, material and energy balances, thermophysics, thermochemistry; related topics.

Credit Hours: 3
Prerequisites or Corequisites: PHYSCS 2750, CHEM 2100

CH_ENG 2226: Engineering Process Computations and Laboratory

Introduction to the effective use of computer software with emphasis on chemical engineering applications, which include solutions for systems of algebraic equations using matrix methods; solutions of ordinary differential equations and partial differential equations and visualization of those solutions; linear, multilinear, and nonlinear regression for data analysis; 2D and 3D plotting, symbolic calculations, process control simulations, and text processing.

Credit Hours: 3
Prerequisites or Corequisites: MATH 1700, CH_ENG 2225

CH_ENG 324: Principles of Chemical Engineering I

Fluid flow, heat and mass transfer. A comprehensive treatment of the transport processes related to chemical engineering operations, with focus on both theory and applications.

Credit Hours: 4
Prerequisites: grade of C- or better in CH_ENG 2225

CH_ENG 325: Principles of Chemical Engineering II

Separation processes in chemical engineering, including: Evaporation, absorption, distillation, extraction, leaching, membrane separation, and drying.

Credit Hours: 3
Prerequisites: CH_ENG 3234
CH_ENG 3243: Chemical Engineering Laboratory I
Laboratory study of some principal unit operations of chemical engineering.
Credit Hours: 3
Prerequisites or Corequisites: CH_ENG 2226 and CH_ENG 3235

CH_ENG 3243W: Chemical Engineering Laboratory I - Writing Intensive
Laboratory study of some principal unit operations of chemical engineering.
Credit Hours: 3
Prerequisites or Corequisites: CH_ENG 2226 and CH_ENG 3235

CH_ENG 3261: Chemical Engineering Thermodynamics I
Study of thermodynamics, with particular reference to chemical engineering applications.
Credit Hours: 3
Prerequisites or Corequisites: grade of C or better in CH_ENG 2225

CH_ENG 3262: Chemical Engineering Thermodynamics II
Chemical thermodynamics, with emphasis on mixtures. Multicomponent systems and phase diagrams; excess properties; chemical potential, fugacity, and activity; models of non-ideal mixtures; phase and surface equilibria; chemical reaction equilibria.
Credit Hours: 3
Prerequisites or Corequisites: CHEM 2110 or CH_ENG 3261, MATH 2300

CH_ENG 4226: Engineering Research Calculations and Reporting
(cross-leveled with CH_ENG 7226). Application and analysis of engineering calculations in MS Excel, Matlab, and project-specific software including applications of calculus, experiential learning, and supervised research. Must have research advisor define at least one experiment and review at least one report. Graded on A-F basis only.
Credit Hours: 3
Prerequisites: MATH 4100

CH_ENG 4270: Design of Experiments and Statistical Quality Control for Process Engineers
(same as BIOL_EN 4270; cross-leveled with CH_ENG 7270, BIOL_EN 7270). A practical statistical tool box for experimenters: process means, effects of variables, factorial experiments, and statistical quality control.
Credit Hours: 3
Recommended: experience with Excel or instructor's consent

CH_ENG 4285: Pollution Prevention
Identify, analyze, and solve energy, water, and raw materials inefficiencies common to industrial processes and facilities. Graded on A-F basis only.
Credit Hours: 3
Prerequisites: CHEM 1320, ENGINR 2300 or CH_ENG 3261, MATH 2300, and PHYSICS 2760

CH_ENG 4306: Advanced Engineering Math
(cross-leveled with NU_ENG 4306). Applies ordinary and partial differential equations to engineering problems; Fourier's series; determinants and matrices; Laplace transforms; analog computer techniques.
Credit Hours: 3
Prerequisites: MATH 4100

CH_ENG 4311: Chemodynamics
(cross-leveled with CH_ENG 7311). Environmental movement of chemicals in air, water, and soil; designed to introduce students to the basic principles and techniques useful for the prediction of the movement and fate chemicals in ecosystems.
Credit Hours: 3
Prerequisites: CH_ENG 3234 or instructor's consent

CH_ENG 4312: Air Pollution Control
(cross-leveled with CH_ENG 7312). Modeling of urban air pollution and control techniques. Topics treated are plume dispersion theories, photochemistry, methods of monitoring, methods of industrial abatement and legal aspects.
Credit Hours: 3
Prerequisites: CH_ENG 3234 or instructor's consent

CH_ENG 4315: Introduction to Bioprocess Engineering
(same as BIOL_EN 4315; cross-leveled with CH_ENG 7315, BIOL_EN 7315). This general introduction to bioprocess engineering covers the fundamentals of microbiology and biochemistry in the context of a biomass refinery. Analyses proceed through the use of mass balances, energy balances, and empirical or theoretical models.
Credit Hours: 3

Prerequisites: BIOL_EN 2180 (for Biological Engineering students) or CH_ENG 2225 (for Chemical Engineering students) or instructor's consent

CH_ENG 4316: Biomass Refinery Operations
(same as BIOL_EN 4316; cross-leveled with CH_ENG 7316, BIOL_EN 4316). Design and operation of processes for conversion and/or fractionation of biomass and associated upstream and downstream unit operations. Emphasis on separations and product recovery.
Credit Hours: 3
Prerequisites: BIOL_EN 2180 (for Biological Engineering students) or CH_ENG 2225 (for Chemical Engineering students) or instructor's consent

CH_ENG 4317: Chemical Processing in Semiconductor Device
(cross-leveled with CH_ENG 7317). This course covers the current plasma processing methods used to produce semiconductor devices with emphasis on memory devices. The physics and chemistry of how plasmas are formed, sustained and interact with the semiconductor wafers being processed. Plasma chemistry and the chemical reactions used in plasma etching are discussed.
Credit Hours: 3
Prerequisites: MATH 4100 or MATH 7100

CH_ENG 4318: Energy Technology and Sustainability
An introductory course on energy technology, resources, practices, and common calculations used for energy analysis. May be repeated for credit.
Credit Hours: 3
Recommended: at least one engineering thermodynamics course or a Physical Chemistry course or instructor's consent

CH_ENG 4319: Introduction to Polymer Materials
(cross-leveled with CH_ENG 7319). An introduction to the structure and properties of polymers. Solution properties, molecular weight determination and rheological behavior are studied. Manufacturing and processing techniques are considered.
Credit Hours: 3
Prerequisites: CH_ENG 3262 and CHEM 2110

CH_ENG 4321: Introduction to Ceramics
(cross-leveled with CH_ENG 7321). Introductory course in ceramics materials, crystal structure, processes and properties. The course content and level of presentation would allow an entry level engineering to be conversant with the terminology and concepts of ceramic science and engineering.
Credit Hours: 3
Recommended: Chemistry and Physics

CH_ENG 4335: Transport Phenomena
(cross-leveled with CH_ENG 7335). Integrated study of momentum, heat and mass transport.
Credit Hours: 3
Prerequisites: CH_ENG 3235, and MATH 4100 or MATH 7100

CH_ENG 4345: Special Reading in Chemical Engineering
Individually supervised special reading leading to an engineering report.
Credit Hour: 2-5
Prerequisites: senior standing

CH_ENG 4363: Chemical Reaction Engineering and Technology
Reactor design and optimization; rate equations; thermal effects in reactor.
Credit Hours: 3
Prerequisites: CH_ENG 2226, CH_ENG 3262, or instructor's consent

CH_ENG 4370: Process Control Methods and Laboratory
State-space modeling, simulation, and experimental validation; stability analysis; feedback design and experimental studies; methods for disturbance rejection.
Credit Hours: 3
Prerequisites: CH_ENG 2226

CH_ENG 4385: Chemical Engineering Design I
The course presents optimum design methods, cost estimation, material selection and other relevant areas for the design of chemical plants. In addition, chemical safety and risk assessment will be covered.
Credit Hours: 3
Prerequisites: CH_ENG 2226, CH_ENG 3262, CH_ENG 3235, CH_ENG 3262, PHYSICS 2760, CHEM 2110

CH_ENG 4464: Electrochemical Reaction Engineering Science
(cross-leveled with CH_ENG 7464). Phenomenological behavior of electrochemical processes (battery emphasis). Theoretical interpretations of diffusion and reaction processes including system modeling. Graded on A-F basis only.
Credit Hours: 3
Prerequisites: CH_ENG 3261 or MAE 2300 or CHEM 3310 or instructor's consent
Recommended: A course in thermodynamics or physical chemistry

CH_ENG 4980: Process Synthesis and Design
(cross-leveled with CH_ENG 7980). Continuation of CH_ENG 4385: application of chemical analysis and modeling to a capstone design project.
Credit Hours: 3
Prerequisites: CH_ENG 4363, CH_ENG 4385

CH_ENG 4980W: Process Synthesis and Design - Writing Intensive
(cross-leveled with CH_ENG 7980). Continuation of CH_ENG 4385: application of chemical analysis and modeling to a capstone design project.
Credit Hours: 3
Prerequisites: CH_ENG 4363, CH_ENG 4385

CH_ENG 4990: Undergraduate Research in Chemical Engineering
Directed study of chemical engineering problems.
Credit Hour: 2-4
Prerequisites: instructor's consent
CH_ENG 4995: Undergraduate Research in Chemical Engineering - Honors
Individual research for a senior thesis; research is supervised by the chemical engineering faculty. The thesis is to be defended before the departmental Honors committee.

Credit Hours: 3-6

Prerequisites: senior standing

CH_ENG 7001: Topics in Chemical Engineering
Current and new technical developments in chemical engineering.

Credit Hours: 3

Prerequisites: instructor's consent

CH_ENG 7220: Hazardous Waste Management
(same as CV_ENG 7220; cross-leveled with CH_ENG 4220, CV_ENG 4220). Engineering principles involved in handling, collection transportation, processing and disposal of hazardous waste minimization, legislation on hazardous wastes and groundwater contamination.

Credit Hours: 3

CH_ENG 7226: Engineering Research Calculations and Reporting
(cross-leveled with CH_ENG 4226). Application and analysis of engineering calculations in MS Excel, Matlab, and project-specific software including applications of calculus, experiential learning, and supervised research. Must have research advisor define at least one experiment and review at least one report. Graded on A-F basis only.

Credit Hours: 3

Prerequisites: MATH 4100

CH_ENG 7270: Design of Experiments and Statistical Quality Control for Process Engineers
(same as BIOL_EN 7270; cross-leveled with CH_ENG 4270, BIOL_EN 4270). A practical statistical tool box for experimenters: process means, effects of variables, factorial experiments, and statistical quality control.

Credit Hours: 3

Prerequisites: experience with Excel or instructor's consent

CH_ENG 7311: Chemodynamics
(cross-leveled with CH_ENG 4311). Environmental movement of chemicals in air, water, and soil; designed to introduce students to the basic principles and techniques useful for the prediction of the movement and fate chemicals in ecosystems.

Credit Hours: 3

Prerequisites: CH_ENG 3234 or instructor's consent

CH_ENG 7312: Air Pollution Control
(cross-leveled with CH_ENG 4312). Modeling of urban air pollution and control techniques. Topics treated are plume dispersion theories, photochemistry, methods of monitoring, methods of industrial abatement and legal aspects.

Credit Hours: 3

Prerequisites: CH_ENG 3234 or instructor's consent

CH_ENG 7315: Introduction to Bioprocess Engineering
(same as BIOL_EN 7315; cross-leveled with CH_ENG 4315, BIOL_EN 4315). This General introduction to bioprocessing covers the fundamentals of microbiology and biochemistry in the context of a biomass refinery. Analysis proceed through the use of mass balances, energy balances, and empirical or theoretical models.

Credit Hours: 3

Prerequisites: BIOL_EN 2180 (for biological engineering students) or CH_ENG 2225 (for chemical engineering students) or instructor's consent

CH_ENG 7316: Biomass Refinery Operation
(same as BIOL_EN 7316; cross-leveled with CH_ENG 4316, BIOL_EN 4316). Design and operation of processes for conversion and/or fractionation of biomass and associated upstream and downstream unit operations. Emphasis on separations and product recovery.

Credit Hours: 3

Prerequisites: BIOL_EN 2180 or CH_ENG 2225 or instructor's consent

CH_ENG 7317: Chemical Processing in Semiconductor Device
(cross-leveled with CH_ENG 4317). This course covers the current plasma processing methods used to produce semiconductor devices with emphasis on memory devices. The physics and chemistry of how plasmas are formed, sustained and interact with the semiconductor wafers being processed. Plasma chemistry and the chemical reactions used in plasma etching are discussed.

Credit Hours: 3

Prerequisites: MATH 4100 or MATH 7100

CH_ENG 7319: Introduction to Polymer Materials
(cross-leveled with CH_ENG 7319). An introduction to the structure and properties of polymers. Solution properties, molecular weight determination and rheological behavior are studied. Manufacturing and processing techniques are considered.

Credit Hours: 3

Prerequisites: CH_ENG 3262 and CHEM 2110

CH_ENG 7321: Introduction to Ceramic Material
(cross-leveled with CH_ENG 4321). Introductory course in ceramics materials, crystal structure, processes and properties. The course content and level of presentation would allow an entry-level engineer to be conversant with the terminology and concepts of ceramics science and engineering.

Credit Hours: 3

Recommended: Chemistry and Physics

CH_ENG 7335: Transport Phenomena
(cross-leveled with CH_ENG 4335). Integrated study of momentum, heat and mass transport.

Credit Hours: 3

Prerequisites: CH_ENG 3235, and MATH 4100 or MATH 7100

CH_ENG 7464: Electrochemical Reaction Engineering Science
(cross-leveled with CH_ENG 4464). Phenomenological behavior of electrochemical processes (battery emphasis). Theoretical interpretations
of diffusion and reaction processes including system modeling. Graded on A-F basis only.

Credit Hours: 3
Prerequisites: CH_ENG 3261 or MAE 2300 or CHEM 3310 or instructor's consent
Recommended: A course in thermodynamics or physical chemistry

CH_ENG 7980: Synthesis and Design of Chemical Process
(cross-leveled with CH_ENG 4980). This is a heuristics-based design course intended to assist students in bringing together capabilities from previous course. An emphasis is placed on the creation process of design. Graded on A-F basis only. Prerequisites: CH_ENG 4363, CH_ENG 4385
Credit Hours: 3

CH_ENG 8001: Advanced Topics in Chemical Engineering
Credit Hours: 3
Prerequisites: instructor's consent

CH_ENG 8029: Advanced Plasma Processing
Concepts and techniques in novel plasma processing: plasma characteristics, plasma sputtering, plasma enhanced chemical vapor deposition (PECVD), plasma etching, plasma treatment, plasma fabrication of nano-structured materials and diamondlike films, biomedical applications.
Credit Hours: 3

CH_ENG 8085: Problems in Chemical Engineering
Supervised investigation in chemical engineering to be presented in the form of a report.
Credit Hour: 1-5
Prerequisites: instructor's consent

CH_ENG 8087: Seminar in Chemical Engineering
Reviews investigations and projects of importance in chemical engineering.
Credit Hour: 1

CH_ENG 8230: Advanced Ceramic Materials
(same as BIOL_EN 8230 and MAE 8230). To provide an advanced level understanding between processing, properties, and microstructure of ceramic materials. Topics include crystallography, defect chemistry, transport properties, microstructure, and forming methods. Graded on A-F basis only.
Credit Hours: 3

CH_ENG 8320: Plasma Polymerization
Fundamental aspects of polymer formation in plasma state: gas ionization, reaction kinetics, plasma characteristics and operational parameters of plasma reactors. Properties of plasma - synthesized ultrathin films and their utilization also discussed.
Credit Hours: 3
Prerequisites: CH_ENG 4319 or instructor's consent

CH_ENG 8336: Advanced Heat and Momentum Transfer
Advanced study of these transport phenomena.
Credit Hours: 3
Prerequisites: CH_ENG 3235 or instructor's consent

CH_ENG 8337: Advanced Mass Transfer
Advanced study of mass transfer.
Credit Hours: 3
Prerequisites: CH_ENG 4336 or instructor's consent

CH_ENG 8338: Analysis of Equilibrium Stage Processes
Advanced study of stage processes.
Credit Hours: 3
Prerequisites: CH_ENG 2226, CH_ENG 3235 and CH_ENG 3262

CH_ENG 8429: Membranes and Membrane Processes
Thermodynamics and mass transfer of membrane separation processes; Concentration-Driven Processes; Pressure-Driven Processes; Electromembrane Processes; Biological Membrane Processes; Membrane Polymers; Preparation of Membranes; Membrane Separation Application (potable and ultrapure water, effluent treatment, gas separations, electrochemistry, dialysis therapeutic, and other applications).
Credit Hours: 3

CH_ENG 8451: Advanced Chemical Engineering Thermodynamics I
Advanced thermodynamics; particular reference to its application to chemical engineering.
Credit Hours: 3
Prerequisites: CH_ENG 3262 or instructor's consent

CH_ENG 8452: Advanced Chemical Engineering Thermodynamics II
Introduction to the methods of statistical thermodynamics and statistical mechanics. The method of ensembles, Maxwell-Boltzmann statistics, the kinetic theory of gases, and theories of liquids. Applications of statistical mechanics to the prediction of physical and chemical properties such as rate coefficients, diffusion coefficients, and conductivities. Graded A-F only.
Credit Hours: 3
Prerequisites: CH_ENG 8451 or instructor's consent

CH_ENG 8463: Chemical Reaction Engineering Science
Phenomenological behavior of catalysts. Theoretical interpretations for heterogeneous and homogeneous catalysts.
Credit Hours: 3
Prerequisites: CH_ENG 4363

CH_ENG 8471: Process Optimization Methods in Chemical Engineering
Steady-state and unsteady-state optimization techniques applied to chemical processes.
Credit Hours: 3
Prerequisites: CH_ENG 2226
CH_ENG 8990: Research-Masters Thesis in Chemical Engineering
Independent investigation in chemical engineering, to be presented as a thesis. Graded on a S/U basis only.

Credit Hour: 1-99
Prerequisites: Masters candidate

CH_ENG 9990: Research-Doctoral Dissertation in Chemical Engineering
Independent investigation in chemical engineering, to be presented as a thesis. Graded on a S/U basis only.

Credit Hour: 1-99
Prerequisites: Ph.D