Industrial Engineering

James S. Noble, Chair and Director of Undergraduate Studies
College of Engineering
E3437 Lafferre Hall
(573) 882-2691
https://engineering.missouri.edu/academics/imse/

Industrial and Manufacturing Systems Engineering builds on a foundation of science, mathematics, computing and data analytics in order to address a wide range of issues in the socio-technical system (complex combinations of people and technology) and environmental (sustainability) domains. With this unique blend of skills, industrial engineering bring optimization-based approaches to a variety of problems in manufacturing, healthcare, supply chain / logistics, sustainability and service organizations.

Industrial engineers in manufacturing organizations address many issues including designing workplaces, considering both the capabilities of machines and humans. They may design computer-integrated manufacturing systems that include automation and robotics. They may also control production, optimize inventory, design quality systems, evaluate new product proposals and build new or improved production facilities.

Industrial engineers working in the supply chain / logistics domain address issues ranging from supplier selection, demand forecasting, inventory systems, facility location, distribution network design, and transportation.

Industrial engineers are also involved in sustainable systems design where they seek to minimize environmental impact while cost-effectively delivering the goods and services demanded by humanity. Issues addressed range from optimizing the environmental performance of an individual product to quantitatively assessing the performance of energy systems.

Industrial engineering skills are used to design better healthcare delivery where they increase the efficiency of the healthcare system. They also work to reduce errors in a wide range of human-centered systems with expertise from data-driven science and ergonomics.

Finally, industrial engineering skills can help facilitate the judicial process, provide faster and more accurate mail distribution, and optimize airline routing and reservation methods. In summary, the industrial engineer may be involved in the design and operation of a range of systems that provide services at a cost that society can afford at the quality that is required.

The MU IMSE department offers the ABET-accredited Bachelor of Science degree with a major in Industrial Engineering (BSIE), and 5 year Industrial Engineering BSIE/MS and BSIE/MBA programs. At the graduate level, the department offers the Master of Science in Industrial Engineering (MSIE) and the Doctor of Philosophy in Industrial Engineering (PhD IE) degrees. The department also offers students the opportunity to obtain Lean Six Sigma Green Belt certification and/or an interdisciplinary Global Supply Chain Management certification.

Faculty

Professor C. M. Klein**, J. S. Noble**, B. Wu**
Associate Professor R. G. McGarvey**, L. G. Occeña**
Assistant Professor J. H. Kim**, S. Rajendran*, K. Seo*, S. Srinivas*

- Graduate Faculty Member - membership is required to teach graduate-level courses, chair master's thesis committees, and serve on doctoral examination and dissertation committees.
- Doctoral Faculty Member - membership is required to chair doctoral examination or dissertation committees. Graduate faculty membership is a prerequisite for Doctoral faculty membership.

Undergraduate

- BSIE in Industrial Engineering (http://catalog.missouri.edu/undergraduategraduate/collegeofengineering/industrialengineering/bsie-industrial-engineering/)

Advising Contact
James S. Noble, Chair and Director of Undergraduate Studies

Scholarship Information Contact
Luis G. Occeña

Industrial engineering undergraduates complete a core engineering curriculum during the first two years. The objective of this curriculum is to give the student a rigorous foundation in mathematics, natural sciences, basic engineering sciences, applied probability, and computer science, as well as a complementary and meaningful exposure to the humanities and social sciences.

Building on the core courses, students gain knowledge of optimization methodologies, human factors, data analytics and systems modeling. They also learn to model and evaluate integrated systems of people, technology and information in the areas of production and service system design, supply chain design and management, control systems, quality systems, sustainability, data engineering, product and process design.

These fundamental skills provide the foundation from which students learn to develop systematic, integrated, and optimal solution approaches to large-scale enterprise problems. In order to be successful as they begin their careers (or graduate study) students learn to communicate effectively in both oral and written forms, and become proficient in working in diverse teams of individuals. Lastly, the curriculum introduces the student to ethical and professional issues in engineering practice.

Industrial engineering design experiences are integrated throughout the curriculum, most often in a team-based environment. Industrial engineering design is the process of developing and improving integrated systems that include people, materials, information, equipment and energy.

Admission Requirements

- All incoming freshmen with ACT math score of at least 26, and ACT composite of at least 26 or a class rank in the upper 25 percent are directly admitted into the program.
- All other incoming freshmen will be admitted when they have passed, with a C or better grade in Math 1500 (or equivalent) Math 1700 (or equivalent), Physics 2750 (or equivalent) and Chem 1320 (or equivalent), and if they are in good academic standing.
- Students transferring from other institutions (not having a MU GPA) will be admitted after a review of their transcript if they have passing grade in an equivalent of Math 1500, Math 1700, Physics 2750 and Chem 1320 and satisfactory overall prior academic performance.
Program Educational Objectives

The IE Program educational objectives have been developed to address the needs of our constituencies and to be consistent with the University of Missouri mission. Within 3-5 years of graduation from the industrial engineering program in the Industrial and Manufacturing Systems Engineering Department at the University of Missouri:

- Graduates will create value for their employers, demonstrating entrepreneurial initiative, and make contributions that benefit society.
- Graduates will expand their capabilities through professional development and advanced education.
- Graduates will provide leadership and be agents of change in their profession and/or communities.

The objectives are based on a few key concepts: value, entrepreneurial initiative, expanding capability, leadership, and being agents of change. ‘Value’ creation is defined as what a graduate’s employer requires in order to achieve its stated objectives. The IMSE graduate adds value to the organization by taking entrepreneurial initiative that contributes to the greater good of society. Graduates face an environment where technology is advancing at an ever increasing pace, therefore, they will need to expand their knowledge and capabilities through professional development and advanced education. Due to their systems view of the enterprise, industrial engineers are often called upon to provide leadership within an enterprise and, as such, are required to manage the change that is inherent in today’s dynamic environment.

Student Outcomes

Student Outcomes (SO) are defined as the abilities the department’s BSIE graduates will have upon graduation that will enable them to achieve the program’s educational objectives. The student objectives reflect the assimilation of what has been taught in the curriculum upon completion of the undergraduate education.

All MU BSIE graduates should have:

1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3. an ability to communicate effectively with a range of audiences
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

In summary, graduates of the Department of Industrial and Manufacturing Systems Engineering (IMSE) will possess a strong foundation upon which they can grow professionally, and continue to build a focused set of fundamental and engineering knowledge and skills that are integrated and applicable to real-world problems in any enterprise setting.

Accreditation

The University of Missouri program in industrial engineering is accredited by the Engineering Accreditation Commission (EAC) of ABET.

IMSE Honors Program

The IMSE Honors Program follows the regulations and philosophy of the College of Engineering Honors Program, and as such is intended to encourage, facilitate and reward independent study by high-ability undergraduate students.

The heart of the program is an undergraduate honors project, undertaken and completed by the time of graduation while enrolling in 3 to 6 credits of IMSE 4995 (http://catalog.missouri.edu/search/?P=IMSE%204995) Undergraduate Research Industrial Engineering - Honors. The academic credit for the honors project (3-6 credits in IMSE 4995 (http://catalog.missouri.edu/search/?P=IMSE%204995) replaces an equivalent number of credits of IMSE or Technical electives. The project is conducted under the direction of an IMSE professor (honors advisor) who is selected by the student, with agreement by the professor. The project culminates in an honors thesis, which is read and approved by the honors advisor and a second reader. A finished copy of the honors thesis, signed by the honors advisor and second reader, is required for satisfactory completion of the project.

Academic Qualifications for the Honors Program

Honors students must maintain and graduate with a 3.0 overall GPA. In the case of a transfer student, their transferred credit plus their MU credit will average 3.0/4.0. Students must have a minimum of 60 credit hours.

The successful honors scholar has a degree of flexibility in their program of study. Honors scholars may reduce the credits required for degree completion to the University minimum (i.e., 120 credits) by substituting graduate course credits through dual enrollment (undergraduate/graduate at MU) during the last two semesters of the undergraduate program. Any 8000 level course may be substituted, but only courses at the 7000 level that are not required for the BSIE degree at the 4000 level (eg. IMSE elective courses, technical electives) may be substituted.

Lean Six Sigma Green Belt Certification

IMSE students have the opportunity to obtain a Lean Six Sigma Green Belt certification either during their degree program or after. Certification requires students to obtain a GPA average of 2.5 or better in IMSE 4110 (http://catalog.missouri.edu/search/?P=IMSE%204110), IMSE 4310 (http://catalog.missouri.edu/search/?P=IMSE%204310), and IMSE 4610 (http://catalog.missouri.edu/search/?P=IMSE%204610), then they must successfully complete IMSE 4385 (http://catalog.missouri.edu/search/?P=IMSE%204385) - Lean Six Sigma Green Belt Project (a 1 credit hour course where DMAIC is used to improve a process within an organization).

Global Supply Chain Management Certificate

IMSE students have the opportunity to obtain an interdisciplinary undergraduate Certificate in Global Supply Chain Management (GSCM) which is jointly offered by the Department of Management and the Department of Industrial and Manufacturing Systems Engineering. Certification requires students to complete 15 credit hours with a 3.0
GPA. There are nine required credit hours (MGMT 4070, IMSE 4350 and IMSE 4910), plus six elective hours from a list of courses.

Graduate

- MS in Industrial Engineering (http://catalog.missouri.edu/undergraduategraduate/collegeofengineering/industrialengineering/ms-industrial-engineering/)
- PhD in Industrial Engineering (http://catalog.missouri.edu/undergraduategraduate/collegeofengineering/industrialengineering/phd-industrial-engineering/)

Industrial & Manufacturing Systems Engineering Graduate Programs
College of Engineering
E3437 Lafferre Hall
(573) 882-2691
http://engineering.missouri.edu/imse/

Interim Director of Graduate Studies: Luis G. Occeña

About IMSE
The graduate program in industrial engineering provides a scholarly environment in which highly qualified, creative students may obtain the knowledge and develop the skills necessary to solve complex industrial, governmental and societal system design problems. These systems are required to operate within increasingly complex constraints, thus requiring the use of sophisticated and creative designs. The industrial engineer responsible for such designs must be capable of applying a broad spectrum of scientific tools if the most effective systems are to be obtained.

Our master of science program is designed to provide a basic understanding of these tools and experience in the application of these tools in the design process. The doctor of philosophy program is designed to provide the specialized knowledge and skills necessary to develop new tools or methods for solving complex systems design problems. Graduate students are able to obtain an interdisciplinary Global Supply Chain Management certificate as part of their academic program.

General Admission Guidelines
Acceptance for advisement in the department’s graduate programs is available to students with an ABET accredited undergraduate engineering degree. Engineering graduates who have not taken linear programming, linear algebra, statistical quality control or engineering economic analysis must complete 12 hours of additional course work before graduation.

Students with baccalaureate degrees in mathematics, physics, chemistry or computer science may be accepted if they have completed 13 hours of calculus, three hours of differential equations and six hours of calculus-based probability and statistics. Several factors are considered in evaluating an applicant’s capability, such as overall GPA, grade trends and major area grades. In addition, each applicant is required to take the general test of the GRE and international students must take the TOEFL and TWE, or IELTS.

Facilities and Resources
Laboratory facilities in several major application areas, both within the department and in the college, support the academic program. Neighboring industries, city, county and state government agencies, local hospitals and nearby large metropolitan centers provide a reservoir of research and design opportunities.

Computing and Reference Materials
The department has access to the University of Missouri System computing network and maintains its own computing facilities for student use. Besides Ellis Library facilities, an excellent collection of mathematical, statistical and engineering books and reference materials are housed in the engineering library and the industrial and manufacturing systems engineering departmental library.

Funding
Fellowships, scholarships and teaching and research assistantships are available to qualified graduate students. These forms of financial assistance are supported by funds made available through state, federal and industrial graduate support programs and through research grants from various industrial and governmental agencies.

IMSE 1000: Introduction to Industrial Engineering
Introduction to industrial engineering profession, the Industrial and Manufacturing Systems Engineering department, and the core topics of industrial engineering. Introduction to problem solving, ethics and industrial engineering design and analysis techniques.

Credit Hour: 1

IMSE 2030: Fundamentals of Systems Design and Analysis
Develop an understanding of a systems approach to the design and operation of modern industrial organizations: systems structure and function, system specification, structured problem solving and system design methodology.

Credit Hours: 3

IMSE 2110: Probability and Statistics for Engineers
Introduction to data analysis, probability concepts, random variables, parameter estimation and hypothesis testing.

Credit Hours: 3
Prerequisites: MATH 1500. Restricted to Engineering Students who are non-IMSE majors

IMSE 2210: Linear Algebra for Engineers
Study of quantitative methods necessary for analysis, modeling and design of optimal industrial systems.

Credit Hours: 3
Prerequisites: MATH 1700

IMSE 2710: Engineering Economic Analysis
Fundamentals of engineering economic decision making. Includes time value of money, breakeven analysis, capital budgeting, replacement, after-tax analysis, inflation, risk, sensitivity analysis and multi-attribute analysis.

Credit Hours: 3
Prerequisites: sophomore standing
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
<th>Credit Hours</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSE 3030</td>
<td>Manufacturing and Supply Systems</td>
<td>Provide a structured approach for the design and optimization of a system throughout its lifecycle: techniques following the logical sequence of strategic analysis, system design, implementation, and monitoring.</td>
<td>3</td>
<td>IMSE 2030</td>
</tr>
<tr>
<td>IMSE 3110</td>
<td>Probability Models for Engineers</td>
<td>Introduction to probability concept and theory, random variables, discrete and continuous probability distributions, joint probability distributions.</td>
<td>3</td>
<td>MATH 1500. Restricted to IMSE students only</td>
</tr>
<tr>
<td>IMSE 3810</td>
<td>Ergonomics and Workstation Design</td>
<td>Ergonomics and human factors theories applied to the design of man-machine systems. Discussion of ergonomic methods for measurement, assessment, and evaluation, with major topics including workstation design, environmental stresses, and workplace safety. Includes lab.</td>
<td>3</td>
<td>Restricted to IMSE students. ENGINR 1200 and IMSE 4110</td>
</tr>
<tr>
<td>IMSE 3810W</td>
<td>Ergonomics and Workstation Design - Writing Intensive</td>
<td>Ergonomics and human factors theories applied to the design of man-machine systems. Discussion of ergonomic methods for measurement, assessment, and evaluation, with major topics including workstation design, environmental stresses, and workplace safety. Includes lab.</td>
<td>3</td>
<td>Restricted to IMSE students. ENGINR 1200 and IMSE 4110</td>
</tr>
<tr>
<td>IMSE 4001</td>
<td>Topics in Industrial and Manufacturing Systems Engineering</td>
<td>Current and new technical developments in industrial engineering.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IMSE 4085</td>
<td>Problems in Industrial Engineering</td>
<td>Supervised investigation in industrial engineering presented in form of an engineering report.</td>
<td>1-4</td>
<td></td>
</tr>
<tr>
<td>IMSE 4110</td>
<td>Engineering Statistics</td>
<td>(cross-leveled with IMSE 7110). Understanding and application of statistical analysis techniques. Emphasis on hypothesis testing, regression analysis, analysis of variance (ANOVA) and design of experiments (DOE).</td>
<td>3</td>
<td>Restricted to IMSE students or by Departmental consent. Grade of C- or better in IMSE 3110</td>
</tr>
<tr>
<td>IMSE 4210</td>
<td>Linear Optimization</td>
<td>(cross-leveled with IMSE 7210). Theory and application of linear optimization.</td>
<td>3</td>
<td>Restricted to IMSE students. Grade of C- or better in IMSE 2210</td>
</tr>
<tr>
<td>IMSE 4220</td>
<td>Optimization Modeling and Computational Methods</td>
<td>(cross-leveled with IMSE 7220). Modeling and solution techniques for mathematical optimization, including linear, nonlinear, integer, and stochastic programming. Emphasis on formulation of models for most-efficient use of solution algorithms. Graded on A-F basis only.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IMSE 4230</td>
<td>Operations Research Models</td>
<td>(cross-leveled with IMSE 7230). Formulates probabilistic models and determines optimal control policies for queuing and inventory systems. Introduces Markov chains and dynamic programming.</td>
<td>3</td>
<td>Restricted to IMSE students or by Departmental consent. Grade of C- or better in IMSE 2210 and IMSE 3110</td>
</tr>
<tr>
<td>IMSE 4280</td>
<td>Systems Simulation</td>
<td>(cross-leveled with IMSE 7280). Discrete-event stochastic systems modeling and experimentation using simulation software. Statistical design and analysis including distribution fitting and alternative comparison methodologies.</td>
<td>3</td>
<td>Restricted to IMSE students. CMP_SC 1050. Grade of C- or better in IMSE 4110</td>
</tr>
<tr>
<td>IMSE 4310</td>
<td>Integrated Production Systems Design</td>
<td>(cross-leveled with IMSE 7310). Design and operation of production systems, including lean six sigma concepts, just-in-time/kanban, facility layout and material flow issues.</td>
<td>3</td>
<td>Restricted to IMSE students or by Departmental consent. IMSE 4210, IMSE 4280</td>
</tr>
<tr>
<td>IMSE 4330</td>
<td>Material Flow and Logistics System Design</td>
<td>(cross-leveled with IMSE 7330). Modeling and analysis of structural and operational issues associated with material-flow system design including facility location, warehouse/inventory systems, and distribution/transportation systems.</td>
<td>3</td>
<td>IMSE 4210 and IMSE 4280</td>
</tr>
<tr>
<td>IMSE 4350</td>
<td>Production and Operations Analysis</td>
<td>(cross-leveled with IMSE 7350). Quantitative methods for forecasting, scheduling, and production control in manufacturing and service systems. Use of Enterprise Resource Planning (ERP) systems.</td>
<td>3</td>
<td>Restricted to IMSE students or by Departmental consent. IMSE 4210 and IMSE 4230</td>
</tr>
</tbody>
</table>
IMSE 4360: Supply Chain Engineering
(cross-leveled with IMSE 7360). Modeling and analysis of supply chain network design and management issues including integration of production, inventory control, supplier selection, risk management and logistics network design. Graded on A-F basis only.
Credit Hours: 3
Prerequisites: IMSE 4350

IMSE 4370: Service Systems Engineering and Management
(cross-leveled with IMSE 7370). Service systems contribute to more than 75% of US GDP and provide close to 80% employment. This course introduces students to service system engineering and management and will discuss models, concepts and solution methods important in the design, control, and operation of service systems. In addition, this course will provide students the ability to apply industrial engineering and operations research tools for analyzing service enterprises, including supply chain engineering, financial engineering and revenue management. Graded on A-F basis only.
Credit Hours: 3
Prerequisites: IMSE 4210 or instructor's consent

IMSE 4380: Six Sigma Methodology
(cross-leveled with IMSE 7380). An overview of the Six Sigma DMAIC methodology for analyzing and improving processes. Requires completing a Six Sigma Green Belt project. Graded on A-F basis only.
Credit Hours: 3
Prerequisites: Grade of C or better in IMSE 2110 or IMSE 4110 or STAT 4710

IMSE 4385: Lean Six Sigma Green Belt Project
(cross-leveled with IMSE 7385). Application of the Lean Six Sigma methodology in an industry-based project. Prerequisites: IMSE 4310
Credit Hour: 1

IMSE 4410: Data Engineering and Predictive Modeling
(cross-leveled with IMSE 7410). Introduces data structures and relational databases. Addresses the integration of computation and data. Provides training on data preparation and pre-processing using SQL, Python, and R. Covers the most commonly used predictive modeling methods, their core principles and real-life applications. Includes the use of current software for data analytics and building machine learning models.
Credit Hours: 3
Prerequisites: Restricted to IMSE students. CMP_SC 1050 and IMSE 4110

IMSE 4420: Web-Based Information Systems
(cross-leveled with IMSE 7420). Data models, design of databases using E-R, UML (Access/Oracle), web databases, web servers and interfaces (Visual Basic, JavaScript), E-commerce infrastructure (PDM, STEP, XML), data mining for management information and services.
Credit Hours: 3
Prerequisites: IMSE 4410 and instructor's consent

IMSE 4550: Computer Aided Design and Manufacturing
(cross-leveled with IMSE 7550). Product realization process from design, process planning, to manufacturing. Includes CE, DFS/DFM, CAD, CAPP, CNC, and survey of manufacturing methods.
Credit Hours: 4
Prerequisites: Restricted to IMSE students; Junior Standing
Corequisites: ENGINR 2200

IMSE 4560: Introduction to Rapid Prototyping
(cross-leveled with IMSE 7560). Course covers all five MU systems: FDM, SLS, SLA, Polyjet, 3DP. Students will learn fundamental rapid prototyping and related concepts, and design and produce models from each system. Graded on A-F basis only.
Credit Hours: 3
Prerequisites: IMSE 4550

IMSE 4570: Computer Integrated Manufacturing Control
(cross-leveled with IMSE 7570). Implementation of computer integrated manufacturing (CIM) and automation at the shop floor level. Covers essential components of machine sensing and actuation (including programmable robots), information representation and processing, data communication and networking.
Credit Hours: 3
Prerequisites: IMSE 4550

IMSE 4580: Industrial Energy Efficiency and Management
(cross-leveled with IMSE 7580). Introduction to the fundamentals of industrial energy efficiency and management. Covers the essential concepts, best practices, management systems and current standards to achieve and improve energy efficiency in industrial settings, and utilizes hands-on experiences involving real assessment and analysis of industrial site visits and projects.
Credit Hours: 3
Prerequisites: IMSE 2030 or instructor's consent

IMSE 4610: Engineering Quality Control
(cross-leveled with IMSE 7610). Analysis of quality in manufacturing including control charts, sampling plans, process capability, experimental design; introduction to system reliability. Overview of Six Sigma and DMAIC methodology.
Credit Hours: 3
Prerequisites: Restricted to IMSE students or by Departmental consent. IMSE 4550

IMSE 4670: Introduction to Life Cycle Analysis
(cross-leveled with IMSE 7720). Introduction to life cycle thinking, application of ISO standards for conducting an LCA. Students learn process, input-output and hybrid LCA modeling basics, in addition to the application of LCA skills and thinking to improve the performance of systems and processes. Graded on A-F basis only.
Credit Hours: 3
Prerequisites: Junior standing
IMSE 4750: Entrepreneurial Innovation Management: Enterprise Conception
(same as MANGMT 4750). Develop a new business and technology plan including marketing, finance, engineering, manufacturing, and production concepts in this joint College of Engineering and College of Business course.

Credit Hours: 3
Prerequisites: sophomore standing

IMSE 4755H: Entrepreneurial Innovation Management: Enterprise Conception-Honors
Develop a new business and technology plan including marketing, finance, engineering, manufacturing, and production concepts in this joint College of Engineering and College of Business course.

Credit Hours: 3
Prerequisites: sophomore standing. Honors eligibility required

IMSE 4810: Cognitive Ergonomics
(cross-leveled with IMSE 7810). This course will cover the study of empirical research in Cognitive ergonomics and Human-Computer Interaction (HCI). Students will learn cognitive information processing, mental workload, human reliability, and empirical methods in HCI research. Graded on A-F basis only.

Credit Hours: 3
Recommended: Junior or senior level undergraduate students

IMSE 4910: Industrial Engineering Internship
An industry-based learning experience that provides opportunities to apply industrial engineering skills, concepts and theories in a practical context. Requires submission of an internship plan for prior approval and a final oral presentation / written report at the completion of the internship. Graded on A-F basis only.

Credit Hours: 3
Prerequisites: instructor and departmental consent
Recommended: junior standing

IMSE 4920: Industrial Engineering COOP
An industry-based learning experience that provides opportunities to apply industrial engineering skills, concepts and theories in a practical context. Requires submission of a COOP plan for prior approval and a final oral presentation / written report at the completion of the COOP. Graded on A-F basis only.

Credit Hours: 3
Prerequisites: instructor and departmental consent
Recommended: junior standing

IMSE 4970: Capstone Design I
Overview of professional engineering issues such as ethics, team dynamics, communication, and project management. Includes team-based industrial assessments to develop skills in problem/opportunity identification. Graded on A-F basis only.

Credit Hour: 1
Prerequisites: Restricted to IMSE students; Senior Standing, IMSE 2030; IMSE 2710

IMSE 4970W: Capstone Design I - Writing Intensive
Overview of professional engineering issues such as ethics, team dynamics, communication, and project management. Includes team-based industrial assessments to develop skills in problem/opportunity identification. Graded on A-F basis only.

Credit Hour: 1
Prerequisites: Restricted to IMSE students; Senior Standing, IMSE 2030; IMSE 2710

IMSE 4980: Capstone Design II
Industry-based team design experience structured to integrate material presented throughout the Industrial and Manufacturing Systems Engineering curriculum. Must immediately follow IMSE 4970.

Credit Hours: 3
Prerequisites: Restricted to IMSE student; IMSE 3810, IMSE 4310, and IMSE 4970

IMSE 4980W: Capstone Design II - Writing Intensive
Industry-based team design experience structured to integrate material presented throughout the Industrial and Manufacturing Systems Engineering curriculum. Must immediately follow IMSE 4970.

Credit Hours: 3
Prerequisites: Restricted to IMSE student; IMSE 3810, IMSE 4310, and IMSE 4970

IMSE 4990: Undergraduate Research in Industrial Engineering
Independent investigation or project in industrial engineering. May be repeated to 6 hours.

Credit Hour: 0-6

IMSE 4995: Undergraduate Research Industrial Engineering - Honors
Independent investigation or project in industrial engineering. May be repeated to 6 hours. Enrollment limited to receiving departmental honors

Credit Hour: 0-6
Prerequisites: Restricted to IMSE students only

IMSE 7001: Topics in Industrial and Manufacturing Systems Engineering
Current and new technical developments in industrial engineering.

Credit Hours: 3

IMSE 7110: Engineering Statistics
(cross-leveled with IMSE 4110). Understanding and application of statistical analysis of techniques. Emphasis on hypothesis testing, regression analysis, analysis of variance (ANOVA) and design of experiments (DOE).

Credit Hours: 3
Prerequisites: grade of C- or better in IMSE 3110

IMSE 7210: Linear Optimization
(cross-leveled with IMSE 4210). Theory and application of linear optimization.

Credit Hours: 3
Prerequisites: IMSE 2210

IMSE 7220: Optimization Modeling and Computational Methods
(cross-leveled with IMSE 4220). Modeling and solution techniques for
mathematical optimization, including linear, nonlinear, integer, and
stochastic programming. Emphasis on formulation of models for most-
efficient use of solution algorithms. Graded on A-F basis only.
Credit Hours: 3
Prerequisites: IMSE 3110, IMSE 4210

Prerequisites: IMSE 3110, IMSE 4210

IMSE 7230: Operations Research Models
(cross-leveled with IMSE 4230). Formulates probabilistic models and
determines optimal control policies for queuing and inventory systems.
Introduces Markov chains and dynamic programming.
Credit Hours: 3
Prerequisites: grade of C- or better in IMSE 2110 and IMSE 3110

IMSE 7280: Systems Simulation
(cross-leveled with IMSE 4280). Discrete-event stochastic systems
modeling and experimentation using simulation software. Statistical
design and analysis including distribution fitting and alternative
comparison methodologies. Graded on A-F basis only.
Credit Hours: 3
Prerequisites: Restricted to IMSE students. CMP_SC 1050. Grade of C-
or better in IMSE 4110

IMSE 7310: Integrated Production Systems Design
(cross-leveled with IMSE 4310). Design and operation of production
systems, including lean production concepts, just-in-time / kanban, facility
layout and material flow issues.
Credit Hours: 3
Prerequisites: IMSE 4210, IMSE 4280

IMSE 7300: Material Flow and Logistics System Design
(cross-leveled with IMSE 4330). Modeling and analysis of structural
and operational issues associated with material-flow system design
including facility location, warehouse/inventory systems, and distribution/
transportation systems.
Credit Hours: 3
Prerequisites: IMSE 4210, IMSE 4280

IMSE 7350: Production and Operations Analysis
(cross-leveled with IMSE 4350). Quantitative methods for forecasting,
scheduling, and production control in manufacturing and service systems.
Use of Enterprise Resource Planning (ERP) systems.
Credit Hours: 3
Prerequisites: IMSE 4210 and IMSE 4230

IMSE 7360: Supply Chain Engineering
(cross-leveled with IMSE 4550). Modeling and analysis of supply
chain network design and management issues including integration of
production, inventory control, supplier selection, risk management and
logistics network design. Graded on A-F basis only.
Credit Hours: 3
Prerequisites: IMSE 4350

Prerequisites: IMSE 4350

IMSE 7370: Service Systems Engineering and Management
(cross-leveled with IMSE 4370). Service systems contribute to more than
75% of US GDP and provide close to 80% employment. This course
introduces students to service system engineering and management
and will discuss models, concepts and solution methods important in
the design, control, and operation of service systems. In addition, this
course will provide students the ability to apply industrial engineering
and operations research tools for analyzing service enterprises,
including supply chain engineering, financial engineering and revenue
management. Graded on A-F basis only.
Credit Hours: 3
Prerequisites: IMSE 4210 or Instructor's consent

IMSE 7380: Six Sigma Methodology
(cross-leveled with IMSE 4380). An overview of the Six Sigma DMAIC
methodology for analyzing and improving processes. Requires
completing a Six Sigma Green Belt project. Graded on A-F basis only.
Credit Hours: 3
Prerequisites: Grade of C or better in IMSE 2110 or IMSE 4110 or STAT
4710

IMSE 7385: Lean Six Sigma Green Belt Project
(cross-leveled with IMSE 4385). Application of the Lean Six Sigma
methodology in an industry-based project.
Credit Hour: 1
Prerequisites: IMSE 4310

IMSE 7410: Data Engineering and Predictive Modeling
(cross-leveled with IMSE 4410). Introduces data structures and relational
databases. Addresses the integration of computation and data. Provides
training on data preparation and pre-processing using SQL, Python,
and R. Covers the most commonly used predictive modeling methods,
their core principles and real-life applications. Includes the use of current
software for data analytics and building machine learning models. Graded
on A-F basis only.
Credit Hours: 3
Prerequisites: CMP_SC 1050 and IMSE 4110

IMSE 7420: Web-Based Information Systems
(cross-leveled with IMSE 4420). Data models, design of databases using
E-R, UML (Access/Oracle), web databases, web servers and interfaces
(Visual Basic, JavaScript), E-commerce infrastructure (PDM, STEP,
XML), data mining for management information and services.
Credit Hours: 3
Prerequisites: IMSE 4410 and instructor's consent

IMSE 7450: Computer Aided Design and Manufacturing
(cross-leveled with IMSE 4550). Product realization process from design,
process planning, to manufacturing. Includes CE, DFS/DFM, CAD,
CAPP, CNC, and survey of manufacturing methods.
Credit Hours: 4
IMSE 7560: Introduction to Rapid Prototyping
(cross-leveled with IMSE 4560). Course covers all five MU systems: FDM, SLS, SLA, Polyjet, 3DP. Students will learn fundamental rapid prototyping and related concepts, and design and produce models from each system. Graded on A-F basis only.

Credit Hours: 3

IMSE 7570: Computer Integrated Manufacturing Control
(cross-leveled with IMSE 4570). Implementation of computer integrated manufacturing (CIM) and automation at the shop floor level. Covers essential components of machine sensing and actuation (including programmable robots), information representation and processing, data communication and networking.

Credit Hours: 3
Prerequisites: IMSE 4550

IMSE 7580: Industrial Energy Efficiency and Management
(cross-leveled with IMSE 4580). Introduction to the fundamentals of industrial energy efficiency and management. Covers the essential concepts, best practices, management systems and current standards to achieve and improve energy efficiency in industrial settings, and utilizes hands-on experiences involving real assessment and analysis of industrial site visits and projects.

Credit Hours: 3
Prerequisites: IMSE 2030 or instructor's consent

IMSE 7610: Engineering Quality Control
(cross-leveled with IMSE 4610). Analysis of quality in manufacturing including control charts, sampling plans, process capability, experimental design; introduction to system reliability. Overview of Six Sigma and DMAIC methodology.

Credit Hours: 3
Prerequisites: IMSE 4110 or IMSE 7110

IMSE 7720: Introduction to Life Cycle Analysis
(cross-leveled with IMSE 4720). Introduction to life cycle thinking, application of ISO standards for conducting an LCA. Students learn process, input-output and hybrid LCA modeling basics, in addition to the application of LCA skills and thinking to improve the performance of systems and processes. Graded on A-F basis only.

Credit Hours: 3

IMSE 7750: Entrepreneurial Innovation Management: Advanced Enterprise Conception
Develop a new business and technology plan (including marketing, finance, engineering, manufacturing, and production concepts) in this joint College of Engineering/College of Business course.

Credit Hours: 3

IMSE 7810: Cognitive Ergonomics and Decision Making
(cross-leveled with IMSE 4810). This course will cover the study of empirical research in cognitive ergonomics and Human-Computer Interaction (HCI). Students will learn cognitive information processing, mental workload, human reliability, decision-making, and empirical methods in HCI research. Graded on A-F basis only.

Credit Hours: 3

IMSE 8001: Advanced Topics in Industrial & Manufacturing Systems Engineering
Current and new technical developments in industrial engineering.

Credit Hours: 3

IMSE 8030: Advanced Manufacturing and Supply Systems
The design, regulation, and optimization of manufacturing and supply systems through systems analysis.

Credit Hours: 3

IMSE 8085: Problems in Industrial and Manufacturing Systems Engineering
Supervised investigation in industrial engineering to be presented in the form of an engineering report.

Credit Hour: 1-99

IMSE 8087: Industrial Engineering Graduate Seminar
Selected topics in industrial engineering; oral presentations and engineering reports. Graded on S/U basis only.

Credit Hours: 0

IMSE 8110: Design and Analysis of Engineering Experiments
Application of advanced statistical methods for the design and analysis of experiments, including two-level factorial designs and fractional factorial designs, response surface methods, and random effects models. Graded on A-F basis only.

Credit Hours: 3
Prerequisites: IMSE 4110 or IMSE 7110 or equivalent

IMSE 8210: Linear and Network Optimization
Applications of discrete operations research methods, including linear programming, network models, fuzzy sets, integer programming, and meta-heuristics. Graded on A-F basis only.

Credit Hours: 3

IMSE 8220: Nonlinear Optimization
Introduces computational non-linear mathematical programming procedures their use in solving complex industrial systems design problems. Graded on A-F basis only.

Credit Hours: 3

IMSE 8230: Stochastic Processes and Models
Theory and applications of stochastic processes; includes continuous time Markov chain, Markov decision process, queueing theory, and stochastic manufacturing systems. Graded on A-F basis only.

Credit Hours: 3

IMSE 8310: Advanced Integrated Production Systems
Advanced study of the design and operation of flow shop, job shop, and cell-based production systems, including scheduling, layout and material flow issues. Graded on A-F basis only.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSE 8370</td>
<td>Supply Chain Modeling and Analysis</td>
<td>Theory and application of supply chain networks, integration of production and inventory control methods. Graded on A-F basis only.</td>
<td>3</td>
</tr>
<tr>
<td>IMSE 8410</td>
<td>Advanced Computational Systems and Data Engineering</td>
<td>Enable students to utilize advanced computational and data capabilities for research and industrial practice through 1) proper project, code, and data management techniques; 2) wide range of research workflows to solve complex problems; 3) integration of optimization or other domain specific software tools; and 4) parallel computing on High Performance Computing clusters. Graded on A-F basis only.</td>
<td>3</td>
</tr>
<tr>
<td>IMSE 8550</td>
<td>Advanced CAD/CAM</td>
<td>Covers the state-of-the-art in CAD/CAM and explores the latest developments, residual problems, and new direction in CAD/CAM. Includes sculptured surface modeling, rapid prototyping and manufacturing, integrated process planning, shape analysis, machine intelligence. Graded on A-F basis only.</td>
<td>3</td>
</tr>
<tr>
<td>IMSE 8730</td>
<td>Strategic Enterprise Management</td>
<td>Topics including enterprise strategies, process and content models, strategy implementation, value chain analysis, business processes, systems engineering approaches, business process reengineering, and dynamic systems modeling.</td>
<td>3</td>
</tr>
<tr>
<td>IMSE 8810</td>
<td>Human Factors</td>
<td>Human factors inputs, outputs and environment and their influence on design and evaluation of man and machine systems.</td>
<td>3</td>
</tr>
<tr>
<td>IMSE 8990</td>
<td>Research-Masters Thesis in Industrial Engineering</td>
<td>Independent investigation in field of industrial engineering to be presented as a thesis. Graded on S/U basis only.</td>
<td>1-99</td>
</tr>
<tr>
<td>IMSE 9990</td>
<td>Research-Doctoral Dissertation in Industrial Engineering</td>
<td>Independent investigation in field of industrial engineering to be presented as a dissertation. Graded on S/U basis only.</td>
<td>1-99</td>
</tr>
</tbody>
</table>