

MA in Statistics with Emphasis in Data Analytics

Degree Requirements

Students who wish to specialize in Data Analytics may obtain a degree with special emphasis. The general requirements are the same as those for MA degree in Statistics. In addition, students must satisfy the following:

Required Courses

STAT 8110	Software for Statistical Learning	3
STAT 8310	Data Analysis I	3
STAT 8320	Data Analysis II	3
STAT 8330	Data Analysis III	3
STAT 8640	Bayesian Analysis I	3

A candidate for the MA in Statistics with emphasis in Data Analytics degree may choose either an exam or a thesis option in order to satisfy the main requirement for the Master's degree.

Exam Option

A candidate may choose to take the qualifying exam, instead of writing a thesis and presenting it. (The same exam as Ph. D. candidate. See Doctorate of Statistics requirements for more details).

Thesis Option

Original Written Work

Under this option, all candidates must submit a written report on an independent effort toward producing original work related to data analytics. This report may, with the advisor's consent, take the form of a thesis, a written review on a set of papers in statistics, or a written report on an independent study project which may include an original application of statistics. For this work, a student must register for at least three semester hours of STAT 8090.

Presenting the Work

Under the thesis option, all candidates are required to present an open seminar on the results of the written report. The report should be made available for public review, through the Department of Statistics office, for at least one week before the examination.

Examination

Under the thesis option, the MA examination covers material presented in the written report and the seminar and may also cover course work.

Prerequisites

Three semesters of calculus (or equivalent), one semester of linear algebra, and at least one post-calculus course in probability and statistics. At least one course in applied linear models is recommended.